
 

 

“Genome-wide association study identifies 74 loci 

associated with educational attainment” 

 

 

Table of contents 

 

Supplementary Methods ......................................................................................................................... 3 

1 Methods GWA study ...................................................................................................................... 3 

1.1 STUDY OVERVIEW ...................................................................................................... 3 

1.2 PHENOTYPE DEFINITION ............................................................................................. 3 
1.3 GENOTYPING AND IMPUTATION .................................................................................. 4 

1.4 ASSOCIATION ANALYSES ............................................................................................ 4 
1.5 QUALITY CONTROL ..................................................................................................... 6 
1.6 META-ANALYSIS ...................................................................................................... 12 
1.7 WITHIN-SAMPLE REPLICATION ................................................................................. 13 

1.8 OUT-OF-SAMPLE REPLICATION ................................................................................. 14 

2 Testing for Population Stratification ............................................................................................ 19 

2.1 BACKGROUND ........................................................................................................... 19 
2.2 WF-GWAS SIGN TEST ............................................................................................. 20 

2.3 LD SCORE INTERCEPT TEST ...................................................................................... 22 
2.4 DECOMPOSITION OF THE VARIANCE OF THE POLYGENIC SCORE—THEORY .............. 24 

2.5 DECOMPOSITION OF THE VARIANCE OF THE POLYGENIC SCORE—RESULTS ............. 30 
2.6 SIGNIFICANCE OF THE POLYGENIC SCORES IN A WF REGRESSION ............................ 31 

3 Genetic Overlap............................................................................................................................ 34 

3.1 INTRODUCTION ......................................................................................................... 34 
3.2 ESTIMATING GENETIC OVERLAP ............................................................................... 35 

3.3 ENRICHMENT ANALYSIS AND LOOK-UP OF LEAD SNPS IN GWAS FOR OTHER 

PHENOTYPES ......................................................................................................................... 47 

4 Biological Annotation .................................................................................................................. 60 

4.1 LOOK-UP OF NONSYNONYMOUS STATUS, EQTL EFFECTS, ASSOCIATIONS WITH 

OTHER PHENOTYPES, AND PREDICTED GENE FUNCTIONS ..................................................... 63 
4.2 ENRICHMENT ANALYSIS AND FINE-MAPPING OF GWAS SIGNALS WITH FGWAS ...... 69 

4.3 FUNCTIONAL PARTITION OF HERITABILITY WITH GREML ....................................... 75 
4.4 FUNCTIONAL PARTITION OF HERITABILITY USING STRATIFIED  

LD SCORE REGRESSION ........................................................................................................ 78 
4.5 PRIORITIZATION OF GENES, PATHWAYS, AND TISSUES/CELL TYPES WITH DEPICT . 83 
4.6 ENRICHMENT OF LOCI BY GENES IMPLICATED IN SYNDROMIC DISORDERS .............. 98 

4.7 TEMPORAL EXPRESSION PATTERN OF GENES PRIORITIZED BY DEPICT ................. 104 

5 Polygenic Prediction .................................................................................................................. 107 

5.1 METHODS ............................................................................................................... 107 
5.2 DISCUSSION ............................................................................................................ 108 



 

 

6 Mediation ................................................................................................................................... 111 

6.1 THEORY AND METHODS .......................................................................................... 111 
6.2 CAVEATS ................................................................................................................ 112 
6.3 STANDARD ERRORS FOR INDIRECT EFFECTS ........................................................... 112 
6.4 DATA ...................................................................................................................... 113 
6.5 RESULTS ................................................................................................................. 114 

7 Gene-environment Interactions .................................................................................................. 117 

7.1 INTRODUCTION ....................................................................................................... 117 
7.2 COHORT ANALYSIS ................................................................................................. 117 
7.3 ASCERTAINMENT BIAS ............................................................................................ 118 
7.4 DISCUSSION ............................................................................................................ 118 

Supplementary Notes .......................................................................................................................... 123 

8 Author Contributions.................................................................................................................. 123 

9 Additional acknowledgments ..................................................................................................... 134 

 

 

  



 

 

Supplementary Methods 

 

1 Methods GWA study 

1.1 Study Overview 

We examined two phenotypes: a continuous variable measuring the number of years of 

schooling completed (EduYears, N = 293,723) and an indicator variable for college 

completion (College, N = 280,007). All analyses were performed at the cohort level 

according to a pre-specified and publicly archived analysis plan. Summary statistics provided 

by cohorts were uploaded to a central server and subsequently meta-analyzed. The lead PI of 

each cohort affirmed that the results contributed to the study were based on analyses 

approved by the local Research Ethics Committee and/or Institutional Review Board 

responsible for overseeing research. All participants provided written informed consent. 

Supplementary Table 1.1 provides basic information about the participating cohorts. 

Our Analysis Plan was preregistered at https://osf.io/paj9m/. With one exception, the analyses 

reported here follow the original plan. The exception is that the original plan treated 

EduYears and College symmetrically whereas throughout the manuscript, we treat EduYears 

as the primary variable and de-emphasize College. After circulation of the Analysis Plan to 

our cohorts, a paper was posted on bioRxiv showing that the genetic correlation between the 

two measures is very high, with the point estimate suggesting a perfect genetic correlation1. 

Previously, we had considered as plausible the possibility that College would have better 

power for detecting associations at the upper end of the distribution of EduYears. However, 

since College is constructed by dichotomizing EduYears, the very high genetic correlation 

suggests that the College phenotype is for all intents and purposes merely a coarsening of the 

EduYears phenotype.  

Hence, we reasoned in light of this new evidence that attempts to detect associations with 

EduYears are likely to be better powered, regardless of whether or not the effect is stronger at 

the upper end of the distribution of EduYears. To eliminate (or at least minimize) concerns 

about data mining, we made the decision to promote EduYears to the primary phenotype 

before quality-control work had begun in earnest. After the decision to make EduYears the 

primary phenotype was made, we performed the quality control sequentially. In the first 

stage, we completed the quality control of the EduYears variable, froze the meta-analysis, and 

announced to all analysts responsible for follow-up work that their work would be based on 

the pooled-sex EduYears results. We subsequently turned to the College quality control.  

1.2 Phenotype Definition 

Subjects in our cohorts are heterogeneous in terms of birth cohort and country of birth, and 

hence they were educated under a diverse set of educational systems. Moreover, the survey 

questions that were used to evaluate subjects’ educational qualifications are not identical 

across cohorts. To maximize comparability across samples, we use as a standard the 1997 

International Standard Classification of Education (ISCED) of the United Nations 

Educational, Scientific and Cultural Organization2. Specifically, we map each major 

educational qualification that it is possible to attain in a specific country into one of seven 

https://osf.io/paj9m/


 

 

harmonized ISCED categories. To construct our primary outcome variable, EduYears, we 

impute a years-of-education equivalent for each ISCED category using the mapping shown in 

Supplementary Table 1.2. Following Rietveld et al.3, we also analyzed the binary outcome, 

College, which takes the value 1 for subjects with an ISCED level equal to 5 or more (and 0 

otherwise).  

The study-specific phenotype measurements and distributions are summarized in 

Supplementary Table 1.3. With the exceptions of STR and HBCS, whose variables are 

derived from official register data on educational attainment, the studies relied on surveys to 

measure educational attainment. 

1.3 Genotyping and Imputation 

Genotyping was performed using a range of common, commercially available genotyping 

arrays. Study analysts were encouraged to impute markers from all 23 chromosomes using 

the 1000 Genomes project (1kGp) March 2012 version 3 release (hereafter, 1000G) as 

reference panel, the most recently released haplotype version available when the Analysis 

Plan was circulated. Given the well-known challenges in imputing markers on the X 

chromosome, cohorts who could only supply results for autosomal markers were also invited 

to participate. Supplementary Table 1.4 provides study-specific details on genotyping 

platform, pre-imputation quality-control filters applied to the genotype data, subject-level 

exclusion criteria, imputation software used, the reference sample used for imputation 

(haplotype release date and whether imputation was done using European-ancestry sample or 

the full 1000G-sample) and whether the cohort supplied us with results from the X 

chromosome. As the table shows, the overwhelming majority of cohorts followed the 

recommendation to impute their data against the March 2012 version 3 release of the 1000G 

panel. The exceptions are (i) SardiNIA, which used its own reference panel constructed from 

sequencing data available for about 2000 individuals in their sample4; (ii) Rush, whose 

imputation was based on the December 2010 haplotype release; and (iii) a handful of cohorts 

who began imputation relatively late and used more recent releases that were not available at 

the time that the Analysis Plan was written and circulated. 

1.4 Association Analyses 

1.4.1 EduYears Analyses 

Cohorts were asked to estimate this regression equation for each measured SNP (we drop the 

SNP subscript j here to avoid notational clutter): 

 

(1) 𝐸𝑑𝑢𝑌𝑒𝑎𝑟𝑠 = 𝛽0 + 𝛽1 𝑆𝑁𝑃 + 𝑷𝑪 𝜸 + 𝑩 𝜶 + 𝑿 𝜽 + 𝜖, 
 

where SNP is the allele dose of the SNP; PC is a vector of the first ten principal components 

of the variance-covariance matrix of the genotypic data, estimated after the removal of 

genetic outliers; B is a vector of standardized controls, including a third-order polynomial in 

age, an indicator for being female, and their interactions; and X is a vector of study-specific 

controls. Specifically, in X, study analysts were encouraged to include dummy variables for 

major events such as wars or policy changes that may have affected access to education in 

their specific sample. Mixed-sex cohorts were additionally asked to upload separate 

regression results for men and women. 



 

 

1.4.2 College Analyses 

The College specification is analogous to the EduYears specification. Cohorts uploaded either 

coefficient estimates from a linear probability model or from a logistic regression model. 

 

Linear Regression. The linear model can be written as 

 

(2) 𝐶𝑜𝑙𝑙𝑒𝑔𝑒 = 𝛽0,lin + 𝛽1,lin 𝑆𝑁𝑃 + 𝑷𝑪 𝜸lin + 𝑩 𝜶lin + 𝑿 𝜽lin + 𝜖lin, 
 

where 𝐶𝑜𝑙𝑙𝑒𝑔𝑒 is an indicator variable equal to one for individuals who completed college, 

the other variables are defined as above, and the subscript “lin” indicates that the variables 

correspond to the linear probability model. The parameter 𝛽1,lin is the average change in the 

fraction of subjects whose value of 𝐶𝑜𝑙𝑙𝑒𝑔𝑒 is equal to one associated with being endowed 

with one more copy of the reference allele, after linear adjustment for the covariates. 

 

Logistic Regression. Most participating cohorts uploaded coefficient estimates from the 

logistic regression model, 

 

(3) 
𝑃(𝐶𝑜𝑙𝑙𝑒𝑔𝑒 = 1|𝑆𝑁𝑃, 𝑷𝑪, 𝜶, 𝑿) =

1

1 + 𝑒−(𝛽0,log+𝛽1,log 𝑆𝑁𝑃+𝑷𝑪 𝜸log+𝑩 𝜶log+𝑿 𝜽log)
, 

 

where the subscript “log” is used to label coefficients from the logistic model. In this model, 

the parameter 𝛽1,log can be interpreted as follows: controlling for the covariates, the odds of 

having completed college is increased by a factor of 𝑒𝛽1,log  for each increase of one copy of 

the reference allele. 

1.4.3 Sample Selection Criteria 

Only individuals satisfying the following criteria were eligible for inclusion in the estimation 

sample: 

 

a. Educational attainment was measured when the subject was 30 years of age or older. 

b. The subject passed the cohort’s standard quality controls, which typically include 

removal of subjects who are genetic outliers (to mitigate stratification concerns) and 

subjects with poor genotyping rates. 

c. The subject is of European ancestry, and the subject’s mother tongue is the same as 

the main language in the country of the cohort. 

d. All relevant covariates are available for the subject. 

 

1.4.4 Study-Specific Details 

Supplementary Table 1.5 provides study-specific details on the analysis. Column 2 shows the 

association software used by each study analyst. The EduYears analyses are based on 

summary statistics from all 64 samples listed in Supplementary Table 1.1. Of the 64 samples, 

whose combined sample size is N=293,723, 5 were from single-sex cohorts, and 59 contained 

pooled results from mixed-sex cohorts (who additionally uploaded separate results for men 

and women). 

The College analyses were based on results from 52 of the 64 EduYears samples. The 

combined sample size of these 52 cohorts is N=280,007. One small cohort, LBC1921, is 

excluded because it did not upload College results. The cohort analyst determined that the 

low fraction of college-educated individuals (1-5%) and the small sample would not yield 

reliable estimates of the standard errors. Indeed, because analytical standard errors may not 



 

 

be reliably estimated in small samples when the dependent variable is rare, we restrict our 

final analysis to cohorts with a combined sample size (𝑁𝑡𝑜𝑡) of at least 500 and at least 100 

cases (𝑁𝑐𝑎𝑠𝑒𝑠). We also drop one family-based cohort (ERF) and one isolate (ORCADES) 

because the estimated standard errors of the logistic regression coefficients did not account 

for the sample relatedness (in both cases, the standard errors from their EduYears did account 

for relatedness). Column 3 of Supplementary Table 1.5 reports if a given sample was 

included in the College analyses and also explains why, in two samples, the EduYears sample 

size is not identical to the College sample size. 

Column 4 reports whether the cohorts omitted any of the basic control variables 

recommended in the Analysis Plan in their specification. For example, some cohorts dropped 

higher-order polynomials in birth year because collinearity was causing problems in model 

estimation. Column 5 lists extra controls included by the cohorts in the vector X, such as 

controls for cohort-specific events that may have impacted the education system in the 

cohort. 

Several cohorts contain samples with related subjects. The Analysis Plan encouraged cohorts 

that include related subjects to estimate mixed linear models (MLMs)5,6. To facilitate their 

implementation, the Analysis Plan contained a supplement with sample code for MLM 

estimation written for the software GCTA7. Conceptually, the estimation of MLM models 

involves two steps: (i) the genome-wide data are used to estimate the degree of genetic 

similarity between each pair of individuals in the sample, and (ii) unlike in standard 

regression where the covariance of the error term (in an educational attainment regression) 

between any two individuals is assumed to be zero, the covariance is fitted as an increasing 

linear function of the individuals’ genetic similarity. In other words, to the extent that two 

individuals are more recently descended from a common ancestor (as very accurately 

measured by overall genetic similarity)—and thus are more likely to be similar on 

unobserved environmental factors—these individuals are treated as correlated observations. 

Many cohorts that include related subjects have developed strategies for ensuring that the 

standard errors correctly account for relatedness. Column 6 of Supplementary Table 1.5 

reports whether the estimated standard errors were adjusted for family relatedness and 

provides information about the adjustment used. The details vary by software. For example, 

QIMR estimated a model implemented in the software Merlin Offline8, in which the 

variance-covariance matrix of the phenotypes of members of the same family is assumed to 

have a particular structure according to which resemblance between relatives is induced by 

the additive effects of their shared genes. Some cohorts made no adjustment for non-

independence but instead sought to restrict the estimation samples to conventionally 

unrelated individuals. For example, 23andMe restrict their estimation sample to 

conventionally unrelated individuals by ensuring that no pair of participants in the final 

estimation sample share more than 700 centimorgans of their genome identical-by-descent9. 

1.5 Quality Control 

We closely followed the quality-control protocol used in the GIANT consortium’s most 

recent study of height10. The protocol, implemented by the software EasyQC, is described in 

detail by Winkler et al.11. EasyQC calculates a range of test statistics that are valuable for 

identifying possible sources of error in uploaded summary statistics. It also outputs a 

harmonized set of graphs, described below, that can be visually inspected to identify 

problems with data or analysis. Below, we describe the quality-control filters that were 

applied to the uploaded files. We then describe a subset of several additional diagnostic tests 

that the files were required to pass before being included in the meta-analysis. 



 

 

1.5.1 Quality Control Filters 

Cohorts were asked to provide results according to a specific file format. For each genetic 

marker (which, in the uploaded results, included not just SNPs, but also indels and structural 

variants), cohorts were asked to supply the marker’s chromosome and base-pair position, its 

rs number, its effect allele, its other allele, the effect allele frequency, the estimated 

regression coefficient (beta), the estimated standard error, and a P-value uncorrected for 

genomic control. For genotyped markers, the study analyst was asked to supply us with the 

Hardy-Weinberg P-value. For imputed markers, we requested information about the 

imputation quality provided by default by the software used. We also asked study analysts 

what imputation and association software was used. 

 

From the uploaded files, we filtered out the following markers: 

 

1. If the data were imputed against the September or December 2013 releases of the 

1000 Genomes Phase 1 haplotypes provided by the software IMPUTE2, we drop the 

730+199 SNPs whose strands were incorrectly aligned in these releases.a 

2. We drop a marker if neither an effect allele nor other allele is supplied. We also drop 

a marker if any of the following variables are missing: effect allele frequency, beta, 

standard error, P-value, imputation accuracy (if the marker is imputed), or the 

imputed/genotyped indicator. For variables that can only take on some restricted 

range of values, we drop the marker if the value of the variable falls outside the 

permissible range. For example, P-values have to lie within the unit interval, and 

binary variables can only take on a value of 0 or 1.b 

3. The analytical standard errors computed by genetic-association software packages are 

known to be unreliable in small samples, especially for low-frequency variants11. To 

guard against spurious associations with low-frequency markers in small samples, we 

dropped a marker from a cohort if its minor allele count (MAC) was below 25. We 

also drop markers that explain more than 5% of variance in EduYears, two order of 

magnitudes larger than the effects that should be considered plausible based on the 

findings in Rietveld et al.3.c,d For each SNP 𝑗, we approximate the variance explained 

by 𝑅𝑗
2 ≈

2 𝑀𝐴𝐹𝑗 (1−𝑀𝐴𝐹𝑗) 𝛽̂𝑗
2

𝜎̂𝑦
2 . 

                                                 
a The announcement is available on https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#whats_new 
b Four College cohorts reported P-values from likelihood-ratio (LR) tests in which the test-statistic is defined as 𝜒𝑂𝐵𝑆

2 =

−2𝑙𝑛 (
𝐿0

𝐿1
), where 𝐿0 is the log-likelihood of the full model and 𝐿1 is the log-likelihood of a restricted model in which the 

coefficient for SNP j restricted to equal 0. Under the null hypothesis that 𝛽𝑗 = 0, the statistic is approximately distributed 

𝜒2(1). Remaining cohorts conducted hypotheses-testing using conventional Wald tests in which the P-value is derived from 

the fact that the distribution of the test-statistic 𝑍𝑂𝐵𝑆 =
𝛽̂

𝑠𝑒̂(𝛽̂)
 is approximately 𝑁(0,1). The two tests are asymptotically 

equivalent, but may deliver different answers in finite samples. We err on the side of caution by dropping SNPs from the 

LR-test cohorts that fail to satisfy the inequality |
𝜒𝑂𝐵𝑆

2 .

𝑍𝑂𝐵𝑆
2 − 1| < 0.1. 

c Standard practice is to drop SNPs with estimated betas whose absolute value exceeds some threshold considered to 

represent an implausibly large effect11. Rather than select a single 𝛽 threshold, we decided to apply a more flexible filter that 

is not sensitive to the measurement scale of the dependent variable and allows the 𝛽 threshold to vary by allele frequency. 

The latter is desirable because what constitutes a plausible effect size depends on the allele frequency. To illustrate using the 

example of height, an effect of 15 cm per allele need not indicate a quality-control problem for very low-frequency variants; 

in fact rare polymorphisms with effects of that magnitude have been identified27. However, for common variants, effects of 

that magnitude are impossible (the implied R2 would exceed 100% for any realistic value of the sample variance of height). 

To verify that the number of SNPs dropped due to the R2 filter is not alarmingly high, we reran the filtering of the cohort-

level EduYears results files with the R2 filter applied last. We found that the R2 filter, after applying standard quality-control 

filters, does not remove any SNPs in any of the 44 largest cohorts (combined N = 278,528). The filter removes a small 

number of SNPs in ten of the remaining 20 cohorts:  LBC1936 (9 SNPs dropped), INGI-CARL (64), THISEAS (225), 



 

 

4. We drop markers with low imputation-quality metrics. The exact definition of the 

quality metrics vary by software. In cohorts that supplied us with the Rsq variable 

generated by the imputation software MaCH12, we use a threshold of 0.6. In cohorts 

that supplied us with the INFO variable generated by the imputation software 

IMPUTE213, we used a threshold of 0.7. These thresholds are stricter than those that 

have typically been used in previous studies predating the availability of the 1000G 

reference panel. We used the stricter thresholds because evaluations have shown that 

the conventional thresholds (in the range 0.3-0.4) do not filter out all badly imputed 

rare variants in 1000G data4. The MACH-Rsq and IMPUTE2-INFO thresholds we use 

were proposed by Pistis et al.4 for variants with minor allele frequency below 1%. For 

transparency, and to err on the side of conservatism, we apply these thresholds to all 

markers. Finally, for cohorts that supplied us with PLINK’s imputation-accuracy 

measure (info), we follow Winkler et al.’s11 recommendation of using a threshold of 

0.8. 

5. We drop non-autosomal SNPs, indels, or structural variants. We drop the indels and 

structural variants because they are often poorly imputed and hence difficult to align, 

and we drop X-chromosome markers because they are analyzed separately.  

6. If a cohort supplied us with an rs number, we use the reference file provided by 

EasyQCe to identify the marker’s chromosome-position ID (ChrPosID). If a cohort 

only supplied information about the genetic position (chromosome and base pair) of 

the SNP, we generate a chromosome-position ID (ChrPosID) by horizontally 

concatenating the chromosome number and the base pair position. We subsequently 

drop duplicated markers based on ChrPosID, or markers whose ChrPosID’s are 

unavailable in the 1000 Genomes phase 1 European panel (The 1000 Genomes 

Project Consortium 2012) that we use to identify potential strand problems. In this 

step, SNPs that cannot be successfully aligned due to allele mismatch with the 

reference panel are also removed. 

 

Having applied filters 1-6 to cohort-level summary statistics, we examined how many SNPs 

were dropped in each filtering step. Whenever an unusual number of markers were being 

dropped, we flagged the cohort as potentially having an error in the uploaded results file. The 

issue was discussed with the cohort-level analyst and resolved through a new QC iteration. 

1.5.2 EasyQC Diagnostics 

We conducted several additional diagnostic checks after applying the filters described 

previously. Below, we describe the four most important of these. Winkler et al.11 contains a 

comprehensive discussion of how these four diagnostic tests are useful for identifying a 

number of potential problems and their possible underlying causes.  

  

                                                                                                                                                        
H2000 Controls (16), Hypergenes (1), H2000 Cases (2), MoBa (566), OGP (2300), COPSAC2000 (8561). In a logistic 

regression model, the estimated proportion of variance explained by SNP 𝑗 is defined as 2 𝑀𝐴𝐹𝑗 (1 − 𝑀𝐴𝐹𝑗) 𝛽̂𝑗,log
2 .  

d For cohorts that report marginal effects from linear probability models, it is necessary to transform the estimated linear-

probability coefficient 𝛽̂𝑗,lin into a quantity that is comparable to 𝛽̂𝑗,log as estimated from a logistic model. We use the 

approximation 𝛽̂𝑗,lin ≈ 𝑓(1 − 𝑓)𝛽̂𝑗,log, where 𝑓 is the fraction of the sample with a college degree. The approximation is 

accurate for 𝛽̂𝑗,lin small. Hence, we drop marker j if 2 𝑀𝐴𝐹𝑗 (1 − 𝑀𝐴𝐹𝑗) 𝛽̂𝑗,log
2 > 0.05 (logistic model) or 2 𝑀𝐴𝐹𝑗 (1 −

𝑀𝐴𝐹𝑗) (
𝛽̂𝑗,lin

𝑓̂(1−𝑓̂)
)
2

> 0.05 (linear probability model). 

 
e http://homepages.uni-

regensburg.de/~wit59712/easyqc/1000g/rsmid_map.1000G_ALL_p1v3.merged_mach_impute.v1.txt.gz, 

accessed on 22 June 2015.  

http://homepages.uni-regensburg.de/~wit59712/easyqc/1000g/rsmid_map.1000G_ALL_p1v3.merged_mach_impute.v1.txt.gz
http://homepages.uni-regensburg.de/~wit59712/easyqc/1000g/rsmid_map.1000G_ALL_p1v3.merged_mach_impute.v1.txt.gz


 

 

Diagnostic Test #1. Allele Frequency Plots (AF Plots) 

We looked for errors in allele frequencies and strand orientations by visually inspecting a plot 

of the sample allele frequency of filtered SNPs against the frequency in the 1000 Genomes 

phase 1 version 3 European panel14. 

 

Diagnostic Test #2. P-value vs Z-score Plots (PZ Plots) 

We verified that the reported P-values are consistent with the P-values implied by the 

coefficient estimates and standard errors in the results file. 

 

Diagnostic Test #3. Quantile-Quantile Plots (QQ Plots) 

We visually inspected the cohort-level QQ plots to look for evidence of unaccounted-for 

stratification. 

 

Diagnostic Test #4. Predicted vs Reported Standard Error Plots (PRS Plots) 

We investigated if the standard errors reported in the EduYears files are roughly consistent 

with the reported sample size, allele frequency, and phenotype distribution. Winkler et al.11 

propose a similar diagnostic (the SE-N Plots), which is based on following approximation to 

the standard error of a coefficient estimated by OLS 

 

(4) 
(𝑠. 𝑒. )𝑗 ≈

𝜎̂𝑌

√𝑁
∙

1

√2 𝑀𝐴𝐹𝑗  (1 − 𝑀𝐴𝐹𝑗)

, 

where 𝜎̂𝑌 is the standard deviation of the dependent variable, 𝑀𝐴𝐹𝑗  is the minor allele 

frequency of SNP j, and N is the sample size. We used Equation (4) to generate a predicted 

standard error for 50,000 randomly sampled SNPs. We then plotted these predicted standard 

errors against the reported standard errors. Since the assumptions underlying Equation (4)—

independent observations, no other controls are included in the regression, and no estimation 

error that is due to imputation uncertainty—do not hold exactly, the main purpose of the plot 

is detect substantial discrepancies between the reported and actual size of the estimation 

sample or errors in phenotype transformation. Specifically, we visually inspected the plot to 

ensure that the standard errors were of approximately the predicted magnitude and that there 

were no major outliers. 

 

When examining the standard errors in the College files, we proceeded similarly, albeit using 

an analytical approximation for the standard error of the coefficient from a logistic regression 

when appropriate. The approximation is 

 

(5) 
(𝑠. 𝑒. )𝑗 ≈

1

√𝑁
∙

1

√2 𝑓(1 − 𝑓) 𝑀𝐴𝐹𝑗  (1 − 𝑀𝐴𝐹𝑗)

 

 

where 𝑓 denotes the fraction of college graduates in the sample. 

1.5.3 SNP Exclusions 

Our meta-analyses are based on files that have been filtered according to the six QC-filter 

steps described above and that have passed the four diagnostic tests. Supplementary Table 1.6 

shows, for each of the cohorts contributing to our pooled EduYears analysis, the number of 

SNPs in the originally uploaded results files, the number of SNP exclusions in each of the six 

steps, and the number of SNPs remaining after the full set of QC steps were applied. 



 

 

Supplementary Table 1.7 shows the analogous numbers for College. All subsequent analyses 

are based on the set of SNPs remaining after these exclusions. 

1.5.4 Genomic Control Factors 

The last column of Supplementary Tables 1.6 and 1.7 shows the genomic control factor, 

λGC
15

, from each sample. With the exception of deCODE, whose standard protocol is to apply 

genomic control to the standard errors before uploading results, the reported genomic control 

factors are all computed using untransformed standard errors. For EduYears, the unweighted 

average λGC is 1.02, with a range from 0.95-1.15 and a median of 1.01. For College, the 

corresponding numbers are 1.01, 0.93-1.13, and 1.01. Supplementary Tables 1.6 and 1.7 also 

report the inflation factor used by deCODE to inflate their standard errors prior to uploading 

the results. 

1.5.5 Additional Diagnostics 

Here, we summarize the results from three additional diagnostic tests of the cleaned results 

files. 

1.5.5.1 Cohort-Level 𝐹𝑠𝑡 Statistics 

𝐹𝑠𝑡 is a frequently used measure of between-population genetic differentiation. We estimated 

𝐹𝑠𝑡 using summary data on cohort-level allele frequencies using an approach described by 

Weir16. For each cohort, we calculated the 𝐹𝑠𝑡 relative to the European-ancestry individuals in 

the 1000G sample14. We sampled 30,000 quasi-independent markers with minor allele 

frequencies greater than 0.05 in the European-ancestry subjects. We computed the 𝐹𝑠𝑡 of each 

SNP and averaged over the 30,000 markers to get an overall measure of 𝐹𝑠𝑡 in the cohort. 

Because our reference sample is European, an unusually high level of 𝐹𝑠𝑡 may be an 

indication that a cohort inadvertently failed to remove genetic outliers or a sign of genotyping 

or imputation problems. 

In Weir16, the equation for estimating 𝐹𝑠𝑡 is  

 

(6) 𝐹𝑠𝑡 =

𝑟
(𝑟 − 1)∑ 𝑛𝑖

𝑟
𝑖=1

[∑ 𝑛𝑖
𝑟
𝑖=1 (𝑝𝑖 − 𝑝̅)2]

𝑝̅(1 − 𝑝̅)
 

 

 

where r is the number of populations in the sample, 𝑛𝑖 is the number of individuals in the 

sample from population 𝑖, 𝑝𝑖 is the sample minor allele frequency of the SNP in the sample in 

population 𝑖, and 𝑝̅ is the weighted average frequency across populations in the sample. Since 

in our case 𝑟 = 2, Equation (6) specializes to 

 

(7) 𝐹𝑠𝑡 =

2
𝑁 [𝑛1(𝑝1 − 𝑝̅)2 + 𝑛2(𝑝2 − 𝑝̅)2]

𝑝̅(1 − 𝑝̅)
 

 

 

where 𝑁 = 𝑛1 + 𝑛2, and 𝑝̅ =
𝑛1

𝑁
𝑝1 +

𝑛2

𝑁
𝑝2 is the mean allele frequency. For most EA 

cohorts, the average 𝐹𝑠𝑡 value was below 0.004, which agrees well with previous reports that 

𝐹𝑠𝑡 is around 0.004 between European nations17. The largest 𝐹𝑠𝑡, a value of 0.02, was 

observed for the cohort OGP-Talana. It is known that the central-eastern Sardinia region, 

Ogliastra, has been secluded from the surrounding regions for most of its history. Such 

isolation is expected to generate an unusually high 𝐹𝑠𝑡.18 Although the possibility of technical 



 

 

problems for genotype calling or imputation cannot be ruled out, the observed 𝐹𝑠𝑡 values 

indicate that the quality of the reported genotype data is consistent with observed differences 

in sample allele frequencies between populations, and there is no evidence that cohorts are 

derived from non-European ancestry. Supplementary Table 1.8 summarizes the 𝐹𝑠𝑡 results 

from our 64 samples. 

 

1.5.5.2  𝜆meta Test for Genetic Effects for Each Pair of Cohorts 

We computed a second diagnostic summary statistic, 𝜆meta, which can help identify a number 

of problems, including unknown sample overlap between cohorts (which would violate the 

assumption of independence underlying the meta-analysis). Given a pair of cohorts and a 

locus, 𝜆meta is defined as 

 

(8) 𝜆meta ≡
(𝑏1 − 𝑏2)

2

𝜎𝑏1

2 + 𝜎𝑏2

2 .  

 

where 𝑏𝑖 and 𝜎𝑏𝑖

2  are the reported allelic effect and sampling variance of the number of minor 

alleles in cohort 𝑖 ∈ {1, 2}. If the two cohorts are independent and if the genetic correlation of 

the phenotype across the two cohorts is 1, then the expected value of 𝜆meta across loci is 1. If 

the cohorts overlap substantially, then the reported effect sizes are too similar, and therefore 

the numerator is smaller than the denominator, leading to 𝜆meta < 1. Conversely, if there is too 

much heterogeneity in the estimated effect sizes for a pair of cohorts, either because the 

phenotypes are not the same or because results are not reported for the same allele, then 𝜆meta 

> 1. Hence this statistic is a useful QC metric to detect deviations in the reported summary 

statistics for a pair of cohorts from the assumed null hypothesis of independence and 

homogeneity. In our data, the average value of 𝜆meta is only slightly greater than 1 (see 

Supplementary Table 1.8), suggesting no overall deviation from expectation.  

 

1.5.5.3 Tests of Allele Misalignment 

We supplemented our visual inspection of the allele frequency plots with two additional tests 

of allele misalignment. First, we generated a pruned set of SNPs from the deCODE summary 

statistics whose P-value for the test of association with EduYears was smaller than 0.01. For 

each of our other samples, we calculated the frequency with which the estimated effects had 

the same sign as in the deCODE results. In all but one of the cohorts with a sample size above 

5,000, the fraction of coefficient signs that aligned with deCODE exceeded 50% (see 

Supplementary Table 1.9). 

Second, we used LD Score regression19 to estimate the genetic correlation between EduYears 

in each of our samples and EduYears in deCODE. The estimator often failed to converge, 

especially for smaller cohorts, but of the 21 estimates obtained, all but one are in the 

predicted (positive) direction. The negative estimated genetic correlation is for the cohort 

Rush-MAP: it is -0.29 but has a large standard error (s.e. = 0.70). Given that Rush-MAP 

passes all other diagnostics, it is likely that the negative estimate is a chance outcome due to 

sampling variability. The estimated genetic correlations are shown in Supplementary Table 

1.10. 



 

 

1.6 Meta-Analysis 

We used the software program METAL20 to conduct sample-size-weighted meta-analysis of 

all SNPs that passed the quality-control thresholds. Prior to running the meta-analyses, we 

applied a single correction for genomic control to the cohort-level summary statistics. A total 

of 9,256,490 autosomal SNPs were meta-analyzed using data in the 64 filtered EduYears 

files, and 9,280,749 autosomal SNPs were meta-analyzed using data in the 52 filtered College 

files.f 

1.6.1 EduYears (N = 293,723) 

We used sample-size-weighted meta-analysis in our primary analyses because the method is 

more robust to errors in variable scaling at the cohort level. As a robustness check, we also 

conducted a secondary meta-analysis of EduYears with inverse-variance weighting. 

Consistent with the results from our many diagnostic tests, the results were highly similar, 

suggesting that the scale of measurement was successfully harmonized across cohorts. The 

correlation between the two sets of P-values obtained using the two methods was 0.91. We 

conducted sample-size-weighted sex-stratified meta-analyses of EduYears as another 

robustness check to see whether the results differ for men and women.  

Extended Data Fig. 1 shows the quantile-quantile plot of the P-value distributions for the 

pooled-sex meta-analysis. As is expected under polygenicity, the plots show strong evidence 

of P-value inflation (𝜆𝐺𝐶 = 1.28). In Supplementary Information section 3, we use a variety 

of tools, including LD Score regression19 and various tests of within-family association, to 

quantify how much of this inflation can plausibly be attributed to unaccounted-for 

stratification biases. The results from these analyses consistently suggest that unaccounted-

for stratification biases are unlikely to account for more than a modest share of the observed 

inflation in the 𝜆𝐺𝐶  in the pooled EduYears analysis. Forest plots of the EduYears-associated 

SNPs (not shown) provide little evidence that the estimated effects are driven by a small 

number of outlier cohorts, cohorts from a given region, or by one of the sexes (see 

Supplementary Table 1.11 for the heterogeneity I2 statistics and P-values for the lead SNPs). 

To select independent genome-wide significant SNPs from our primary EduYears results, we 

first grouped the GWAS results into “clumps” as follows. The SNP with the smallest P-value 

was chosen as the lead SNP in its clump. All SNPs less than 500 kb away from this lead SNP, 

in LD with it to the extent r2 > 0.1, and with an association P-value smaller than 10-6 were 

assigned to this clump. The next clump was greedily formed around the SNP with the next 

smallest P-value not already assigned to the first clump. This process was iterated until no 

SNPs remained with P-value < 5×10-8. The end result was 77 approximately independent 

clumps, each centered around, and represented by, a genome-wide significant SNP.  

Next, we checked the long-range LD between these 77 approximately independent SNPs 

without imposing any restriction on distance (except for residing on the same chromosome). 

If the r2 between two SNPs is greater than 0.5, we merged the corresponding clumps and 

assigned the SNP with smaller P-value to represent that locus. This step resulted in 74 

approximately independent loci, each represented by a genome-wide significant SNP. The 

PLINK tool version 1.921 and 1000 Genomes Project phase 1 genotyping data22 (from 268 

individuals with European ancestry) was used to perform clumping and calculating r2 

between a pair of SNPs. Supplementary Table 1.11 shows the EduYears pooled-sex and sex-

stratified association results for these 74 approximately-independent genome-wide significant 

SNPs.  

                                                 
f SNPs with a sample size less than 100,000 (3,074,494 SNPs in EduYears, and 3,161,722 SNPs in College) were excluded 

from the meta-analyses. 



 

 

To help gauge the magnitude of the estimated effects, we used a well-known approximation 

to compute unstandardized regression coefficients from the METAL output obtained from the 

sample-size-weighted meta-analysis: 

(9) 
𝛽̂𝑗 ≈ 𝑧𝑗  

𝜎̂𝑌

√2𝑁𝑗  𝑀𝐴𝐹𝑗  (1 − 𝑀𝐴𝐹𝑗)
 

 

for SNP j with minor allele frequency MAFj, sample size Nj, METAL z-statistic zj, and 

standard deviation of the phenotype 𝜎̂𝑌. For a derivation, see the SOM in Rietveld et al.3. 

Extended Data Fig. 2a shows effects in standard-deviation units of the SNP with lowest P-

value in each of the 74 loci, ordered from largest to smallest. Consistent with the findings in 

Rietveld et al.3, the estimated effects of most common variants are in the range 0.02-0.04 SD, 

implying that an additional allele of the education-increasing allele is associated with 

approximately 0.5 to 1.5 months of additional schooling. The minor allele frequency of the 

SNP with the largest effect size in SD-units is 0.04.  

1.6.2 College (N = 280,007) 

Overall, the results are similar to those from the EduYears analyses, but with higher P-values 

(consistent with the hypothesis that the College variable is a noisier measure of educational 

attainment than the EduYears variable). If we apply the procedure described previously to 

determine the number of approximately independent SNPs reaching genome-wide 

significance, we find 34 such SNPs (compared to 74 in the EduYears meta-analysis). Of 

these, 24 reach genome-wide significance in the EduYears analyses, and 27 are within 500kb 

distance and in LD with an EduYears lead SNP to the extent r2 > 0.1. Supplementary Table 

1.12 shows the association results for these 34 approximately independent genome-wide 

significant SNPs from the College meta-analysis and the EduYears lead SNPs in the same 

locus, if any. 

1.7 Within-Sample Replication 

Following the suggestion of a referee, we attempted to replicate the genome-wide 

associations reported in our previous GWAS of EA3 in the new cohorts that were added to 

this study. Conversely, we also examined if the SNPs that reach genome-wide significance in 

a meta-analysis of the new cohorts replicate in the Rietveld et al. cohorts. 

1.7.1 Cohort Overlap with Rietveld et al. (2013) 

The analyses of EduYears in Rietveld et al.3 were based on a discovery sample of 101,069 

individuals and a combined sample (discovery + replication) of 126,559 individuals. Some of 

the cohorts that contributed to the Rietveld et al. study did not participate in the present study 

(N = 13,981). Overall, the combined sample size of the Rietveld et al. cohorts that contributed 

to our study is N = 126,413 individuals. This number exceeds the difference between 126,559 

and 13,981 because some of the original Rietveld et al. cohorts completed additional 

genotyping since 2013, and were hence able to contribute larger samples to the current study. 

1.7.2 Methods in Within-Sample Replication Analyses 

Rietveld et al. reported three genome-wide significant SNPs in their discovery sample, all of 

which replicated in their replication sample. These three SNPs also yielded lower P-values in 

the “combined” (discovery + replication) sample. In a meta-analysis of the combined sample, 

four additional SNPs reached genome-wide significance. Of these, five were genome-wide 

significant in the EduYears analyses. The remaining two only reached genome-wide 

significance in the analyses of College, but both had P-values just shy of genome-wide 



 

 

significance in the combined-sample EduYears analysis. Given our decision to make 

EduYears the primary phenotype, and to facilitate comparisons of effect sizes, we attempt to 

replicate all of the seven original associations in our meta-analyses of the EduYears variable. 

To examine if the seven associations replicate in our new cohorts, we split our overall sample 

into two subsamples comprising: (1) cohorts that participated in Rietveld et al.3 and (2) all 

new cohorts that were added to the current study. In what follows we refer to the former as 

the “Rietveld Cohorts” and the latter as the “New Cohorts.” We refer to the combined-sample 

meta-analysis results reported by Rietveld et al.3 as the “Rietveld et al. (2013) Cohorts.” 

1.7.3 Within-Sample Replication Results 

Supplementary Table 1.13 reports the results of the replication analysis. In the upper panel, 

we report for the seven SNPs, their standardized effect sizes, standard errors, and P-values. 

We report these statistics from three separate meta-analyses of EduYears conducted in: (i) the 

Rietveld et al. (2013) Cohorts (ii) the Rietveld Cohorts, and (iii) the New Cohorts. The 

reference allele is chosen to be the allele associated with higher values of EduYears in 

Rietveld et al.’s analysis (2013). 

Given the high degree of overlap between cohorts in the previous EA meta-analysis3 and the 

Rietveld Cohorts, the similarity of the effect-size estimates is unsurprising. Reassuringly, the 

sign of the estimated coefficient in the New Cohorts is always in the predicted direction, and 

for all but one of the seven SNPs we can reject the null hypothesis of no effect at the 5% 

significance level (two SNPs, rs4851266 and rs9320913, reach genome-wide significant also 

in the replication sample). For six of the seven SNPs, the 95% confidence intervals for the 

estimated effect sizes overlap across the Rietveld Cohorts and the New Cohorts. 

To further examine replicability, we examined if SNPs that reach genome-wide significance 

in a meta-analysis of the New Cohorts replicate in the Rietveld Cohorts. Applying the 

pruning algorithm described in Supplementary Information section 1.6.1 to meta-analysis 

results for the New Cohorts resulted in 14 approximately independent SNPs. The results from 

this replication analyses are reported in Panel B of Supplementary Table 1.13. The results are 

similar to those of the replication of the associations from the Rietveld Cohorts in the New 

Cohorts: the signs align for all 14 SNPs, and 12 SNP replicate at P-value < 0.05 in the 

Rietveld Cohorts (none of them at genome-wide significance, but 5 at P-value < 10-5). 

In the two replication analyses, the average effects in the replication samples are about 35% 

smaller than the estimated effect of the genome-wide significant association, roughly 

consistent with the degree of inflation one would expect from a Winner’s Curse correction of 

the sort described and performed in the next subsection. 

 

1.8 Out-of-Sample Replication 

Between the time when we submitted our manuscript for publication and when we received 

the referee reports, we gained access to the first wave of UK Biobank (UKB) data.23,24 Here, 

we report the results from a replication analysis of the 74 lead SNPs that emerged from our 

GWAS meta-analysis of EduYears. 

1.8.1 Methods in Out-of-Sample Replication Analyses 

Our out-of-sample replication analyses uses data from the interim release of the UKB data 

and closely follows the methodological best practices recommended in the documentation 

that has been made publicly available through the UKB website23. Following the “exemplary 

GWAS” described in the documentation, we restrict the analysis to the subsample of N = 

112,338 conventionally unrelated individuals with “White British” ancestry. Dropping a 



 

 

small number of observations with missing phenotypic data leaves us with our final 

estimation (N = 111,349). Details on genotyping, pre-imputation quality control, and 

imputation of the interim release data have been documented extensively elsewhere25. 

Supplementary Table 1.14 provides additional details on the UKB analysis, including 

information about phenotype construction, sample demographics, association software, and 

the regression specification we estimate. As recommended by the UKB, we control for 

genotyping array in all analyses and use the software SNPTEST with the “–method expected” 

option specified. We applied exactly the same quality-control filters as in our main analyses 

to the UKB results file.  

Because two of the 74 lead SNPs are missing from the quality-controlled UKB results file, 

we replaced them with nearby proxies. Specifically, we replaced lead SNP rs8005528 with 

rs8008779 (r2 = 0.69) and lead SNP rs192818565 with rs55943044 (r2 = 0.93). In both cases, 

the proxy was selected by choosing from the pooled discovery sample the lowest p-value 

SNP within 500 kb of the original lead SNP, restricting the search to SNPs available in the 

UKB data. 

1.8.2 UKB Replication Results  

Supplementary Table 1.15 and Extended Data Fig. 4 report the results. Of the 74 lead SNPs, 

72 have the anticipated sign in the replication sample, and 52 replicate at the 5% level 

(always with an effect size in the anticipated direction). Of the 52 SNPs, 7 reach genome-

wide significance in the replication sample. 

Under the null model that each of the lead SNPs are null in both the discovery and replication 

data, we would expect 50% of the SNPs (37 SNPs) to have a concordant sign in the discovery 

and replication samples, we would expect 5% (3.7 SNPs) to be significant at the 5% level, 

and we would expect 0.000005% (3.7×10−6 SNPs) to be genome-wide significant. 

We can construct P-values associated with these results, noting that the number of SNPs that 

have a concordant sign or that are above a certain significance level is distributed as a 

Binomial(74, π) where π is the expected fraction of concordant or significant SNPs reported 

in the previous paragraph. Given that we are specifically interested in an increase in 

concordance or significance, we use a one-sided test. The P-value associated with the sign 

concordance is then 1.47×10−19, the P-value associated with the number of SNPs significant 

at the 5% level is 2.68×10−50, and the P-value associated with the number of genome-wide 

significant SNPs is 1.41×10−42. 

We can additionally measure the replicability of the GWAS estimates generally by assessing 

the genetic correlation between the discovery and replication samples. We estimate this using 

bivariate LD Score regression. (Details of estimating genetic correlation using LD Score 

regression, including the reference panel used to produce LD Scores, are in Supplementary 

Information section 3.2.2.) We estimate a genetic correlation of 0.946 (SE = 0.021). These 

results, along with the P-values reported above, suggest that the GWAS coefficients 

estimated in this paper in general, and the estimates of the 74 lead SNPs in particular, are 

highly replicable. 

1.8.3 Expected Replication Record 

To benchmark this replication record under a natural alternative hypothesis (as opposed to the 

expected replication under the null hypothesis calculated above), we calculated the expected 

degree of replication given the meta-analysis results, the sample size in the meta-analysis, 

and the sample size of the replication sample. To do this, we conducted a Bayesian Winner’s 

Curse correction described in a previous study of cognitive performance (Rietveld et al., 



 

 

201426, SI pp. 7-13). We assume a diffuse prior (in the notation of the original paper, 𝜏2 →
∞), and we treat the winners’-curse-adjusted estimates as the vector of true underlying 

parameters, 𝜷. Below, we denote the vector of standard errors from our meta-analysis and the 

UKB replication by 𝝈GWAS and 𝝈UKB, respectively. The probability that SNP i has a matching 

sign across the two analyses is 

 

𝑃(match𝑖) = Φ(−
|𝛽𝑖|

𝜎GWAS,𝑖
)Φ(−

|𝛽𝑖|

𝜎UKB,𝑖
) + [1 − Φ(−

|𝛽𝑖|

𝜎GWAS,𝑖
)] [1 − Φ(−

|𝛽𝑖|

𝜎UKB,𝑖
)], 

 

where Φ(⋅) is the standard normal cumulative distribution function. Similarly, the probability 

that the UKB estimate for SNP i is significant at the 𝛼-level is 

 

𝑃(sig𝑖) = Φ(−
|𝛽𝑖|

𝜎GWAS,𝑖
+ Φ−1 (

𝛼

2
)) + [1 − Φ(−

|𝛽𝑖|

𝜎GWAS,𝑖
− Φ−1 (

𝛼

2
))]. 

 

Since the lead SNPs are (approximately) independent, the expected number of SNPs with 

matching signs in the discovery and replication analyses is simply 

 

∑𝑃(match𝑖).

𝑖

 

 

And the expected number of SNPs meeting the threshold 𝛼 is 

 

∑𝑃(sig𝑖).

𝑖

 

 

Applying the above methodology, we find that 71.4 of the 74 SNPs are expected to have 

matching signs, 40.3 SNPs are expected to be significant at the 5% level, and 0.6 SNPs are 

expected to be genome-wide significant. The observed numbers are, respectively, 72, 51 and 

7. The replication record of the lead SNPs in the UKB is hence somewhat stronger than 

predicted by the power calculations. 
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2 Testing for Population Stratification 

2.1 Background 

 

Population stratification is a major concern in genetic-association studies. It can severely bias 

the estimates for causal variants, or worse, lead to false positives. This can occur if a 

particular variant of a SNP is more common in one subpopulation than another and if there 

are mean differences in the phenotype of interest between subpopulations due to factors that 

do not involve that SNP. Such factors could be either: 

 

1. Non-genetic factors. These include cultural or environmental factors; the mechanism 

through which confounding can arise is illustrated by the famous chopsticks 

example1. 

2. Genetic factors that do not involve the particular SNP of interest. The GWAS 

estimate for a SNP will be biased if that SNP varies in frequency across 

subpopulations and if other causal SNPs also vary in frequency across subpopulations 

(and are thus in LD with the SNP of interest within the entire population). Note that a 

bias could arise even if the particular SNP of interest is in perfect linkage equilibrium 

(LE) within each subpopulation with all causal SNPs that differ in frequency across 

subpopulations and if there are no mean differences in phenotype due to non-genetic 

reasons. 

To make this discussion precise, we analyze a simple linear model for a quantitative trait 𝑦𝑖 

for individual 𝑖: 
 

 

(1) 𝑦𝑖 = ∑ 𝑥𝑖𝑘𝑏𝑘
𝑝
𝑘=1 + 𝑃𝑖 + 𝜀𝑖, 

 

where 𝑥𝑖𝑘 is individual 𝑖’s genotype at SNP 𝑘, 𝑝 is the number of SNPs in the genome, 𝑃𝑖 is a 

fixed effect corresponding to the environmental effect of being in the individual’s 

subpopulation, and 𝜀𝑖 is the residual and is independent of 𝑥𝑖. Each estimate 𝛽̂𝑗 from a 

GWAS corresponds to the linear projection of the trait onto the genotype at a single SNP 𝑗.  
That is, using E∗(∙ | ∙) to denote the linear-projection operator, 

 

E∗(𝑦𝑖|𝑥𝑖𝑗) = E∗(∑ 𝑥𝑖𝑘𝑏𝑘
𝑝
𝑘=1 + 𝑃𝑖 + 𝜀𝑖|𝑥𝑖𝑗) = 𝛽𝑗𝑥𝑖𝑗, 

 

where 

 

(2) 𝛽𝑗 = 𝑏𝑗 + ∑ E∗(𝑥𝑖𝑘|𝑥𝑖𝑗)𝑘≠𝑗 𝑏𝑘 + E∗(𝑃𝑖|𝑥𝑖𝑗). 
 

If 𝑥𝑖𝑗 is stratified by subpopulation and if nongenetic factors (i.e., 𝑃𝑖) vary by subpopulation, 

then E∗(𝑃𝑖|𝑥𝑖𝑗) ≠ 0, causing 𝛽𝑗 to differ systematically from 𝑏𝑗. This difference corresponds 

to the first bias described above. Similarly, if 𝑥𝑖𝑗 is stratified by subpopulation and so is a set 

of causal SNPs with nonzero 𝑏𝑘’s, then E∗(𝑥𝑖𝑘|𝑥𝑖𝑗) ≠ 0 for those 𝑘 SNPs—even if the SNPs 



 

 

are in perfect LE within subpopulations (e.g., even if they are on different chromosomes). 

This effect will be aggregated across all causal SNPs in the genome that differ in frequency 

across subpopulations. It is the second source of bias due to population stratification 

described above. 

 

Several methods have been proposed to correct for these biases and thereby reduce the risk of 

false positives due to population stratification. These include controlling for the top principal 

components of the genetic-relatedness matrix (GRM) in the analysis or estimating mixed-

linear models. Indeed, almost all cohorts in this GWAS of EduYears followed one or the 

other of these strategies. Nonetheless, there is still some concern that residual stratification 

could remain. This possibility is particularly concerning in large GWA studies such as this 

one, where the effects of even a very small amount of stratification bias may be comparable 

in magnitude to the estimated SNP effect sizes. 

 

This document presents the theory and associated results of the methods we employ to assess 

whether our GWAS estimates reflect the effects of true polygenic signals or those of 

population stratification. These methods are a sign test (Supplementary Information section 

2.2), the LD Score intercept method (2.3), a decomposition of the variance of the estimated 

polygenic score (2.4 and 2.5), and a regression of EduYears on the polygenic score using only 

within-family variation (2.6).  

 

2.2 WF-GWAS Sign Test 

As a first-order consideration, we would like to know if our results are entirely driven by 

stratification or if our GWAS results in fact capture some true genetic signal. A simple sign 

test—based on comparing the signs of the GWAS estimates to those of the estimates from a 

WF analysis—is robust to violations of the many assumptions required for the other tests 

presented below. If a SNP has no true genetic effect, then the signs of the GWAS and WF 

estimates will be independent and will be concordant with 50% probability. Hence, if 

significantly more than 50% of the GWAS estimates for the lead SNPs have concordant signs 

with the corresponding WF estimates, it is strong evidence that at least some of the lead SNPs 

uncovered by the GWAS are truly causal. We describe this test more precisely below. 

 

A GWAS estimate for SNP 𝑗, 𝛽̂𝑗, can be decomposed as 

𝛽̂𝑗 = 𝛽𝑗 + 𝑠𝑗 + 𝑈𝑗 , 

where 𝛽𝑗 is the true underlying GWAS parameter for SNP 𝑗, 𝑠𝑗 is the associated bias due to 

stratification, and 𝑈𝑗 is the sampling variance of the estimate with E(𝑈𝑗) = 0. Since WF 

estimates of 𝛽𝑗 are robust to stratification, a WF estimate for SNP 𝑗 can similarly be 

decomposed as 

𝛽̂𝑊𝐹,𝑗 = 𝛽𝑗 + 𝑉𝑗, 

 

where 𝑉𝑗 is the sampling variance of the estimates with E(𝑉𝑗) = 0. Note that if 𝛽̂𝑗 and 𝛽̂𝑊𝐹,𝑗 

are estimated in independent samples, then 𝑈𝑗 and 𝑉𝑗 will be uncorrelated. 

 



 

 

Under the null hypothesis that 𝛽𝑗 = 0 for all 𝑗, the probability that 𝛽̂𝑗 and 𝛽̂𝑊𝐹,𝑗 have 

concordant signs is 50%. Therefore, denoting by 𝐶 the random variable that corresponds to 

the count of how many times the signs match for the two estimates, under the null hypothesis, 

𝐶~Binomial(0.5, 𝑆), 
 

where 𝑆 is the number of SNPs tested. For a given 𝑆 and 𝐶̂, we can then calculate the P-value 

for a one-sided test that 𝐶 ≥ 𝐶̂ under the null hypothesis. We call this test “the sign test.” 

 

The sign test makes virtually no assumptions other than the independence of 𝑈𝑗 and 𝑉𝑗, which 

can be ensured by calculating our two estimates in non-overlapping samples. Moreover, this 

test is robust to bias due to the Winner’s Curse since the Winner’s Curse biases estimates 

away from zero, therefore not altering the sign. On the other hand, this test is not informative 

about how much stratification there is. It is possible to imagine scenarios where there is a 

large amount of stratification in our estimates but where the sign test would nevertheless 

reject the null hypothesis, as long as a sufficient number of SNPs have a moderate causal 

effect. In summary, rejecting the null hypothesis in the sign test constitutes strong evidence 

that at least some of the identified SNPs are truly causal, but other tests with stronger 

assumptions are needed to quantify how much stratification there is. 

 

For our analysis, we calculate the WF estimates of the effects of each lead SNP on EduYears 

using pooled results from the QIMR, STR, MCTFR, and NTR cohorts, combined using an 

inverse-variance weighted meta-analysis. For the GWAS estimates, we omit these five 

cohorts and perform a meta-analysis of the remaining cohorts. Thus, the WF estimates are 

based on a sample size of 5,506 sibling pairs, and the GWAS estimates have a sample size of 

271,360 individuals.  

 

Of the 74 lead SNPs, 66 are present in all five datasets used to calculate the WF estimates. Of 

these 66 SNPs, 41 (62%) had GWAS and WF estimates with concordant signs. This 

corresponds to a P-value of 0.032 in a one-sided test; we thus reject the null that the 66 

genome-wide significant SNPs are all false positives arising due to stratification. 

 

Although the sign test is statistically significant, the ultimate fraction of matching signs may 

seem small given the sample sizes available. Using the coefficients from our replication 

sample, we can estimate the expected number of matching signs under two assumptions: (i) 

the coefficients we estimate in the UKB equal the true underlying parameter value vector, 𝜷; 

and (ii) the true within-family parameter values are equal to the true population parameter 

values 𝜷 (e.g., there is no bias due to population stratification).  Then using the standard 

errors from the WF analysis, 𝝈𝑊𝐹, and from the GWAS, 𝝈𝐺𝑊𝐴𝑆, we can calculate the 

probability that SNP i would have the same sign in a WF and GWAS analysis as  

 

𝑃(match𝑖) =Φ(−
|𝛽𝑖|

𝜎𝐺𝑊𝐴𝑆,𝑖
)Φ(−

|𝛽𝑖|

𝜎𝑊𝐹,𝑖
) + [1 −Φ(−

|𝛽𝑖|

𝜎𝐺𝑊𝐴𝑆,𝑖
)] [1 −Φ(−

|𝛽𝑖|

𝜎𝑊𝐹,𝑖
)]. 

 

Since these SNPs are (approximately) independent, we then can calculate the expected 

number of matching signs as 

 

∑𝑃(match𝑖),

𝑖

 



 

 

 

with a variance of 

 

∑𝑃(match𝑖)[1 − 𝑃(match𝑖)].

𝑖

 

 

 

By this approach we find that the expected number of matching signs is 49.7 out of 66 with a 

95% confidence interval from 43.2 SNPs to 56.1 SNPs. Thus the actual number of signs 

aligned (41 signs) is smaller than expected under the null hypothesis. We therefore reject the 

joint hypothesis that assumptions (i) and (ii) above both hold. 

 

This discrepancy could be explained by stratification, heterogeneous effects, or some mix of 

both. We do not think we can convincingly quantify to what extent each of the two factors 

drives the result. On the one hand, there is clear evidence that the genetic effects are indeed 

heterogeneous. For example, estimates of the genetic correlation with deCODE are 

overwhelmingly below 1.00 (Supplementary Table 1.10) and the predictive power of the 

score varies by cohort in the STR sample (Supplementary Table 7.1 and Supplementary 

Information section 7). On the other hand, the LD Score regression results in the following 

subsection suggest that there is some stratification. We therefore view the sign test as 

providing useful supporting evidence, but overall less informative and definitive than the LD 

Score regression results, which quantify the degree to which the results are affected by 

stratification. 

 

 

2.3 LD Score Intercept Test 

Following the approach described in Bulik-Sullivan et al.2, we use the LDSC software to 

estimate the intercept in a LD Score regression to assess if our results exhibit signs of 

population stratification. This approach uses GWAS summary statistics for all measured 

SNPs.  

 

Unlike the Genomic Control (GC) method, which assumes that confounding bias (e.g., due to 

population stratification and cryptic relatedness) is responsible for inflation in the GWAS chi-

square statistics, the LD Score regression method can disentangle inflation that is due to a 

true polygenic signal throughout the genome (which affects the slope of the LD Score 

regression) from inflation that is due to confounding biases such as cryptic relatedness and 

population stratification (which affects the intercept of the regression).  

 

Formally, the LD Score regression intercept method is based on the relationship 

 

𝐸[𝜒𝑗
2] =

𝑁ℎ2ℓ𝑗

𝑀
+ 𝑁𝑎 + 1, 

 

where 𝜒𝑗
2 = 𝑁𝛽̂𝑗

2 is the chi-square statistic from the GWAS for SNP j, N is sample size, ℓ𝑗 is 

the LD Score of SNP j, ℎ2/𝑀 is the average heritability explained per SNP, and a is a term 

that measures the contribution of confounding biases.  

 



 

 

Bulik-Sullivan et al. show that: this relationship holds under a polygenic model, the intercept 

of the regression minus one (i.e., Na) is an estimator of the contribution of confounding bias 

to the inflation of the chi-square statistics, and the intercept equals one (i.e., Na is equal to 0) 

under a model without confounding biases.  

 

We used the LDSC software to estimate the regression of the chi-square statistics on ℓ𝑗 and to 

test whether the estimate of the intercept is significantly different from 1. We use the 

“eur_w_ld_chr/” files of LD Scores calculated by Finucane et al.3 and made available on 

https://github.com/bulik/ldsc/wiki/Genetic-Correlation. These LD Scores were computed 

with genotypes from the European-ancestry samples in the 1000 Genomes Project using only 

HapMap3 SNPs. Only HapMap3 SNPs with MAF > 0.01 were included in the LD Score 

regression. 

 

As described in Supplementary Information section 1.6, we applied GC at the cohort level 

before running the meta-analysis to produce our main GWAS estimates. However, because 

GC will tend to bias the intercept of the LD Score regression downward, we did not apply GC 

to the summary statistics we used to estimate the LD Score regression. Furthermore, we 

excluded the deCODE cohort from the analysis because the cohort-level regression estimates 

for deCODE did not correct for the high level of relatedness in the sample (their standard 

procedure is to apply GC). Consequently, including the estimates from deCODE would very 

likely have led to an intercept that is considerably upward biased. This procedure—

estimating the LD Score regression with summary statistics that were not GC’d and 

excluding the deCODE cohort—allows us to interpret the estimated LD Score regression 

intercept as an unbiased measure of the amount of stratification there is in the sample, aside 

from deCODE, that we used for the GWAS.  

 

Running the LD Score regression on these data, we estimate an intercept of 1.0491 (Extended 

Data Fig. 3a), which is significantly larger than 1 (the standard error reported by the LDSC 

software is 0.0091). By comparison, the mean 𝜒2 statistics for all the SNPs in the LD Score 

regression is 1.5966. This suggests that there is some confounding bias (due to population 

stratification, cryptic relatedness, or other confounds) but that it accounts for only a small part 

of the inflation in the chi-square statistics. Thus, the inflation is largely attributable to true 

polygenic signal throughout the genome. 

 

We note that the amount of inflation due to confounding bias is likely to be even smaller in 

our main GWAS results (e.g., in the estimates for the genome-wide significant SNPs) 

because, as mentioned above, genomic control was applied at the cohort level for that main 

GWASg. 

 

                                                 
g Though genomic control is overly conservative, using it should make little difference for all but the larger cohorts in our 

sample4. To verify this, we re-ran the meta-analysis without the cohort-level genomic control correction and instead applied 

GC at the meta-analysis level using the LDSC intercept (1.05) as the correction factor. The results changed very little. To be 

specific, the total count of genome-wide significant SNPs remained 74, the same number we obtained with cohort-level 

genomic control. The only changes were that one lead SNP on chr2 (rs4851251) was replaced by another SNP (rs72819174) 

in the same locus (because rs4851251 no longer had the lowest P-value SNP in the locus), one lead SNP on chr3 

(rs112634398) fell just below the genome-wide significance threshold, and one SNP on chr16 (rs1007883) rose just above 

the genome-wide significance threshold. The remaining 72 lead SNPs were identical.  

https://github.com/bulik/ldsc/wiki/Genetic-Correlation


 

 

2.4 Decomposition of the Variance of the Polygenic Score—Theory  

As a complement to a number of tests that assess if there is population stratification in their 

data, Wood et al.5 developed a method to quantify the extent to which the variance of a 

polygenic score (constructed from GWAS estimates) in an independent validation sample is 

affected by population stratification in that validation sample. To do so, they decompose the 

variance of the score into expressions that correspond to the variance due to true genetic 

effects, the variance due to estimation error, and the variance due to population stratification 

in the independent validation sample. 

Below, we present a more general derivation of their method, where we relax some implicit 

assumptions they made. In particular: 

 

- We relax the assumption that 𝑔 (the total genetic effects of all SNPs) and 𝑆 (the bias in the 

predictor 𝑔̂ due to population stratification in the GWAS sample) are uncorrelatedh; 

- Our formula for the sibling correlation between two SNPs that are in linkage 

disequilibrium accounts for the effect of population stratification; 

- We model the estimation error terms’ variances and covariances (𝑉𝑒 and 𝐶𝑒 in Wood et al.) 

slightly differentlyi. 

We obtain equations that are similar to Equations 13-16 in Wood et al. but contain a number 

of additional terms. Some of these additional terms are likely to be small, but the magnitude 

of some other terms may be more difficult to assess (because the terms are difficult to 

interpret). If those additional terms are all relatively small, the crux of the Wood et al. 

derivations and the analyses underlying the results presented in Supplementary Table 2.1 still 

hold. 

2.4.1 The True Genetic Score 

We begin with a model that is similar to Wood et al.’s: 

 

(3) 𝑦 = 𝑔 + 𝑃 + 𝜀, 
 

 

where, as in Wood et al., 𝑔 = ∑ 𝑥𝑖𝑏𝑖𝑖   is the genetic score of an individual, and 𝜀 is the 

residual. The difference from Wood et al. is that we explicitly model 𝑃, the effect of 

population stratification. (To be precise, 𝑃 is a subpopulation-level fixed effect: 𝑃𝑝 = 𝑃𝑝′ if 

persons 𝑝 and 𝑝′ are from the same subpopulation.) The new term 𝑃 may be correlated with 

𝑔, but 𝜀 captures sampling variation and is thus independent of both 𝑃 and 𝑔. 

We define 𝑦1, 𝑦2, 𝑔1, and 𝑔2 to be the respective phenotypes and genotypes for sibling pairs. 

Using this notation, we see that 

(4) Var(𝑔) = ∑ Cov(𝑥𝑖, 𝑥𝑗)𝑏𝑖𝑏𝑗𝑖,𝑗  

and 

                                                 
h Wood et al. do not model S directly but they assume that b is independent of their variable e; this assumption is justified if 

there is no bias in the predictor 𝑔̂ due to population stratification in the GWAS sample (among other possible justifications 

for this assumption).   
i Our 𝑉𝑒 term is a sum over all pairs of SNPs that are in LD with one another, whereas the 𝑉𝑒 term in Wood et al. is a sum of 

over all SNPs. 



 

 

(5) Cov(𝑔1, 𝑔2) = ∑ Cov(𝑥1𝑖, 𝑥2𝑗)𝑏𝑖𝑏𝑗𝑖,𝑗  

Note that the covariance between two SNPs, i and j, comes from two sources: LD and 

population stratification. The former, which we define as Cov𝐿𝐷(𝑥𝑖, 𝑥𝑗)—or the population 

covariance between a pair of SNPs due to LD—arises due to fact that nearby SNPs tend to be 

inherited together. It will be equal to zero when 𝑥𝑖 and 𝑥𝑗 are in LE. The population-

stratification source of covariance, which we define as Cov𝑝𝑜𝑝(𝑥𝑖, 𝑥𝑗), arises because certain 

SNPs will be more common in certain subpopulations. Thus 

(6) Cov(𝑥𝑖, 𝑥𝑗) = Cov𝐿𝐷(𝑥𝑖, 𝑥𝑗) + Cov𝑝𝑜𝑝(𝑥𝑖, 𝑥𝑗). 

As we show in the Box at the end of this subsection, the covariance between two SNPs in two 

siblings is 

(7) Cov(𝑥1𝑖, 𝑥2𝑗) =
1

2
Cov𝐿𝐷(𝑥𝑖, 𝑥𝑗) + Cov𝑝𝑜𝑝(𝑥𝑖, 𝑥𝑗). 

This expression generalizes the special cases that  

Cov(𝑥1𝑖, 𝑥2𝑗) = Cov𝑝𝑜𝑝(𝑥𝑖, 𝑥𝑗) 

when SNP 𝑖 and 𝑗 are in LE and that 

Cov(𝑥1𝑖, 𝑥2𝑗) =
1

2
Var𝐿𝐷(𝑥𝑖) + Var𝑝𝑜𝑝(𝑥𝑖) 

when 𝑖 = 𝑗. (Note that Equation 7 is different than the equivalent equation in Wood et al., 

who omit the Cov𝑝𝑜𝑝(𝑥𝑖, 𝑥𝑗) term for SNPs that are in LD.) The intuition behind Equation 7 

is that since siblings share on average half of their parents’ DNA, the cross-sibling covariance 

due to LD is cut in half. On the other hand, since each sibling-pair’s parents are from the 

same subpopulation, the covariance due to population structure will not be diminished when 

comparing siblings. 

 

2.4.2 The Estimated Polygenic Score 

Using bold to denote vectors of SNPs, we define 𝒃̂ as the estimate of 𝒃 obtained from the 

GCTA-COJO method. Given that there may be bias due to stratification in our estimate of 𝒃, 

it may be expressed as 

(8) 𝒃̂ = 𝒃 + 𝒔 + 𝒆, 

where 𝒔 is the bias in the estimate of 𝒃 due to population stratification, and 𝒆 is the estimation 

error due to sampling variation. The polygenic score for 𝑦 can be calculated in an 

independent validation sample as 

𝑔̂ = ∑𝑥𝑖𝑏̂𝑖

𝑖

= 𝑔 + 𝑆 + 𝐸, 



 

 

where 𝑆 ≡ ∑ 𝑥𝑖𝑠𝑖𝑖  and 𝐸 ≡ ∑ 𝑥𝑖𝑒𝑖𝑖 . We note that 𝐸 is independent of 𝑔 and 𝑆 but that 𝑔 and 

𝑆 may not be independent from one another (for instance, if the true genetic effect 𝑔 is 

correlated across subpopulations with the non-genetic subpopulation effect on the phenotype 

(𝑃)). 

To simplify our derivations, we now adopt a notational convention: for any vectors 𝜶 and 𝜷, 

𝑉𝛼𝛽,𝐿𝐷 ≡ ∑ Cov𝐿𝐷(𝑥𝑖, 𝑥𝑗)𝛼𝑖𝛽𝑗  | SNPs are in LD

𝑖,𝑗

 

𝐶𝛼𝛽,𝐿𝐷 ≡ ∑ Cov𝐿𝐷(𝑥𝑖, 𝑥𝑗)𝛼𝑖𝛽𝑗  | SNPs are not in LD

𝑖,𝑗

 

𝑉𝛼𝛽,𝑝𝑜𝑝 ≡ ∑ Cov𝑝𝑜𝑝(𝑥𝑖, 𝑥𝑗)𝛼𝑖𝛽𝑗  | SNPs are in LD

𝑖,𝑗

 

𝐶𝛼𝛽,𝑝𝑜𝑝 ≡ ∑ Cov𝑝𝑜𝑝(𝑥𝑖, 𝑥𝑗)𝛼𝑖𝛽𝑗 | SNPs are not in LD

𝑖,𝑗

. 

We note that 𝐶𝛼𝛽,𝐿𝐷 is always zero by construction. As in Wood et al., we want to estimate 

the following quantities: 

𝑉𝑔 ≡ 𝑉𝑏𝑏,𝐿𝐷 + 𝑉𝑏𝑏,𝑝𝑜𝑝 

𝐶𝑔 ≡ 𝐶𝑏𝑏,𝐿𝐷 + 𝐶𝑏𝑏,𝑝𝑜𝑝 = 𝐶𝑏𝑏,𝑝𝑜𝑝 

𝑉𝑒 ≡ 𝑉𝑒𝑒,𝐿𝐷 + 𝑉𝑒𝑒,𝑝𝑜𝑝 

𝐶𝑒 ≡ 𝐶𝑒𝑒,𝐿𝐷 + 𝐶𝑒𝑒,𝑝𝑜𝑝 = 𝐶𝑒𝑒,𝑝𝑜𝑝. 

We also define two new quantities:  

𝑉𝑠 ≡ 𝑉𝑠𝑠,𝐿𝐷 + 𝑉𝑠𝑠,𝑝𝑜𝑝 

𝐶𝑠 ≡ 𝐶𝑠,𝐿𝐷 + 𝐶𝑠𝑠,𝑝𝑜𝑝 = 𝐶𝑠𝑠,𝑝𝑜𝑝. 

Using these conventions, we can derive the following equalities using (6) and (7): 

Var(𝑔) = 𝑉𝑏𝑏,𝐿𝐷 + 𝑉𝑏𝑏,𝑝𝑜𝑝 + 𝐶𝑏𝑏,𝑝𝑜𝑝 

Cov(𝑔1, 𝑔2) =
1

2
𝑉𝑏𝑏,𝐿𝐷 + 𝑉𝑏𝑏,𝑝𝑜𝑝 + 𝐶𝑏𝑏,𝑝𝑜𝑝 

Var(𝑆) = 𝑉𝑠𝑠,𝐿𝐷 + 𝑉𝑠𝑠,𝑝𝑜𝑝 + 𝐶𝑠𝑠,𝑝𝑜𝑝 

Cov(𝑆1, 𝑆2) =
1

2
𝑉𝑠𝑠,𝐿𝐷 + 𝑉𝑠𝑠,𝑝𝑜𝑝 + 𝐶𝑠𝑠,𝑝𝑜𝑝 

Var(𝐸) = 𝑉𝑒𝑒,𝐿𝐷 + 𝑉𝑒𝑒,𝑝𝑜𝑝 + 𝐶𝑒𝑒,𝑝𝑜𝑝 

Cov(𝐸1, 𝐸2) =
1

2
𝑉𝑒𝑒,𝐿𝐷 + 𝑉𝑒𝑒,𝑝𝑜𝑝 + 𝐶𝑒𝑒,𝑝𝑜𝑝 

Cov(𝑔, 𝑆) = 𝑉𝑏𝑠,𝐿𝐷 + 𝑉𝑏𝑠,𝑝𝑜𝑝 + 𝐶𝑏𝑠,𝑝𝑜𝑝 

Cov(𝑔1, 𝑆2) =
1

2
𝑉𝑏𝑠,𝐿𝐷 + 𝑉𝑏𝑠,𝑝𝑜𝑝 + 𝐶𝑏𝑠,𝑝𝑜𝑝. 

 

2.4.3 Re-deriving Equations 13-16 from Wood et al. 

Wood et al. estimate 𝑉𝑔, 𝑉𝑒, and 𝐶𝑔 + 𝐶𝑒 with the following formulae: 



 

 

𝑉̂𝑔 ≡ Cov(∆𝑦, ∆𝑔̂)    (Wood et al. Equation 13); 

𝑉̂𝑒 ≡ Var(∆𝑔̂) − 𝑉̂𝑔 = Var(∆𝑔̂) − Cov(∆𝑦, ∆𝑔̂)  (Wood et al. Equation 14); 

𝐶̂𝑔 + 𝐶̂𝑒 ≡ 2Cov(𝑔̂1, 𝑔̂2) − Var(𝑔̂)   (Wood et al. Equation 15 & 16). 

Using the more generalized model we present here, we can calculate what these formulae are 

in fact estimating. We begin by calculating 

𝑉̂𝑔 = Cov(∆𝑦, ∆𝑔̂) 

= Cov(∆𝑔 + ∆𝜀, ∆𝑔 + ∆𝑆 + ∆𝐸) 
= Var(∆𝑔) + Cov(∆𝑔, ∆𝑆) 
= 2Var(𝑔) − 2Cov(𝑔1, 𝑔2) + 2Cov(𝑔, 𝑆) − 2Cov(𝑔1, 𝑆2) 
= 𝑉𝑏𝑏,𝐿𝐷 + 𝑉𝑏𝑠,𝐿𝐷 

= 𝑉𝑔 + [𝑉𝑏𝑠,𝐿𝐷 − 𝑉𝑏𝑏,𝑝𝑜𝑝]. 

Next, we have 

𝑉̂𝑒 = Var(∆𝑔̂) − Cov(∆𝑦, ∆𝑔̂) 
= Var(∆𝑔 + ∆𝑠 + ∆𝐸) − (𝑉𝑏𝑏,𝐿𝐷 + 𝑉𝑏𝑠,𝐿𝐷) 

= Var(∆𝑔) + Var(∆𝑠) + Var(∆𝐸) + 2Cov(∆𝑔, ∆𝑠) − (𝑉𝑏𝑏,𝐿𝐷 + 𝑉𝑏𝑠,𝐿𝐷) 

= (2Var(𝑔) − 2Cov(𝑔1, 𝑔2)) + (2Var(𝑆) − 2Cov(𝑆1, 𝑆2)) + (2Var(𝐸) − 2Cov(𝐸1, 𝐸2))

+ (4Cov(𝑔, 𝑆) − 4Cov(𝑔1, 𝑆2)) − (𝑉𝑏𝑏,𝐿𝐷 + 𝑉𝑏𝑠,𝐿𝐷) 

= 𝑉𝑏𝑏,𝐿𝐷 + 𝑉𝑠𝑠,𝐿𝐷 + 𝑉𝑒𝑒,𝐿𝐷 + 2𝑉𝑏𝑠,𝐿𝐷 − 𝑉𝑏𝑏,𝐿𝐷 − 𝑉𝑏𝑠,𝐿𝐷 
= 𝑉𝑠𝑠,𝐿𝐷 + 𝑉𝑒𝑒,𝐿𝐷 + 𝑉𝑏𝑠,𝐿𝐷 

= 𝑉𝑒 + 𝑉𝑠 + [𝑉𝑏𝑠,𝐿𝐷 − 𝑉𝑒𝑒,𝑝𝑜𝑝 − 𝑉𝑠𝑠,𝑝𝑜𝑝]. 

Further, 

𝐶̂𝑔 + 𝐶̂𝑒 = 2Cov(𝑔̂1, 𝑔̂2) − Var(𝑔̂) 

= 2Cov(𝑔1 + 𝑆1 + 𝐸1, 𝑔2 + 𝑆2 + 𝐸2) − Var(𝑔 + 𝑠 + 𝐸) 
= 2Cov(𝑔1, 𝑔2) + 2Cov(𝑆1, 𝑆2) + 2Cov(𝐸1, 𝐸2) + 4Cov(𝑔1, 𝑆2) − Var(𝑔) − Var(𝑆)

− Var(𝐸) − 2Cov(𝑔, 𝑆) 
= 𝑉𝑏𝑏,𝐿𝐷 + 2𝑉𝑏𝑏,𝑝𝑜𝑝 + 2𝐶𝑏𝑏,𝑝𝑜𝑝 + 𝑉𝑠𝑠,𝐿𝐷 + 2𝑉𝑠𝑠,𝑝𝑜𝑝 + 2𝐶𝑠𝑠,𝑝𝑜𝑝 + 𝑉𝑒𝑒,𝐿𝐷 + 2𝑉𝑒𝑒,𝑝𝑜𝑝

+ 2𝐶𝑒𝑒,𝑝𝑜𝑝 + 2𝑉𝑏𝑠,𝐿𝐷 + 4𝑉𝑏𝑠,𝑝𝑜𝑝 + 4𝐶𝑏𝑠,𝑝𝑜𝑝 − 𝑉𝑏𝑏,𝐿𝐷 − 𝑉𝑏𝑏,𝑝𝑜𝑝 − 𝐶𝑏𝑏,𝑝𝑜𝑝

− 𝑉𝑠𝑠,𝐿𝐷 − 𝑉𝑠𝑠,𝑝𝑜𝑝 − 𝐶𝑠𝑠,𝑝𝑜𝑝 − 𝑉𝑒𝑒,𝐿𝐷 − 𝑉𝑒𝑒,𝑝𝑜𝑝 − 𝐶𝑒𝑒,𝑝𝑜𝑝 − 2𝑉𝑏𝑠,𝐿𝐷 − 2𝑉𝑏𝑠,𝑝𝑜𝑝

− 2𝐶𝑏𝑠,𝑝𝑜𝑝 

= 𝑉𝑏𝑏,𝑝𝑜𝑝 + 𝐶𝑏𝑏,𝑝𝑜𝑝 + 𝑉𝑠𝑠,𝑝𝑜𝑝 + 𝐶𝑠𝑠,𝑝𝑜𝑝 + 𝑉𝑒𝑒,𝑝𝑜𝑝 + 𝐶𝑒𝑒,𝑝𝑜𝑝 + 2𝑉𝑏𝑠,𝑝𝑜𝑝 + 2𝐶𝑏𝑠,𝑝𝑜𝑝 

= 𝐶𝑔 + 𝐶𝑒 + 𝐶𝑠 + [2𝐶𝑏𝑠,𝑝𝑜𝑝 + 𝑉𝑏𝑏,𝑝𝑜𝑝 + 𝑉𝑠𝑠,𝑝𝑜𝑝 + 𝑉𝑒𝑒,𝑝𝑜𝑝 + 2𝑉𝑏𝑠,𝑝𝑜𝑝]. 

In summary, we have 

(9) 𝑉̂𝑔 = 𝑉𝑔 + [𝑉𝑏𝑠,𝐿𝐷 − 𝑉𝑏𝑏,𝑝𝑜𝑝] 

(10) 𝑉̂𝑒 = 𝑉𝑒 + 𝑉𝑠 + [𝑉𝑏𝑠,𝐿𝐷 − 𝑉𝑒𝑒,𝑝𝑜𝑝 − 𝑉𝑠𝑠,𝑝𝑜𝑝] 



 

 

(11)  𝐶̂𝑔 + 𝐶̂𝑒 = 𝐶𝑔 + 𝐶𝑒 + 𝐶𝑠 + [2𝐶𝑏𝑠,𝑝𝑜𝑝 + 𝑉𝑏𝑏,𝑝𝑜𝑝 + 𝑉𝑠𝑠,𝑝𝑜𝑝 + 𝑉𝑒𝑒,𝑝𝑜𝑝 + 2𝑉𝑏𝑠,𝑝𝑜𝑝]Ĉg +

Ĉe = Cg + Ce + Cs 

 

2.4.4 Discussion 

The original analysis in Equations 1-20 of Wood et al. aimed “to quantify the fraction of 

phenotypic variance explained by SNPs selected from the GCTA-COJO analyses of the meta-

analysis data … and to quantify the accuracy of predicting height using these selected SNPs.” 

In this paper, we use this analysis to produce Supplementary Table 2.1. 

In light of the above derivations, it may still be possible to interpret these figures in the spirit 

of Wood et al. if the new terms that now appear on RHS of Equations (9)-(11) can either (i) 

be assumed to be very small or (ii) be given a meaningful interpretation. We make the 

following observations: 

 Observation 1: the 𝑉..,𝑝𝑜𝑝 terms represent the amount of variance associated with the SNPs 

that are in LD that is due to population structure. In European-ancestry populations such 

as those from which our data are drawn, 𝐹𝑠𝑡 has been estimated to be small6, which may 

suggest that the 𝑉..,𝑝𝑜𝑝 terms are small. If we can assume these 𝑉..,𝑝𝑜𝑝 terms to be small 

relative to the other terms, Equations (9)-(11) simplify significantly, to: 

(9*) 𝑉̂𝑔 = 𝑉𝑔 + [𝑉𝑏𝑠,𝐿𝐷] 

(10*) 𝑉̂𝑒 = 𝑉𝑒 + 𝑉𝑠 + [𝑉𝑏𝑠,𝐿𝐷]   

(11*) 𝐶̂𝑔 + 𝐶̂𝑒 = 𝐶𝑔 + 𝐶𝑒 + 𝐶𝑠 + [2𝐶𝑏𝑠,𝑝𝑜𝑝]   

 Observation 2: defining 𝒆′ ≡ 𝒆 + 𝒔, 𝑉𝑒′ ≡ 𝑉𝑒 + 𝑉𝑠, and 𝐶𝑒′ ≡ 𝐶𝑒 + 𝐶𝑠, we can express 

these equations as: 

(9**) 𝑉̂𝑔 = 𝑉𝑔 + [𝑉𝑏𝑠,𝐿𝐷] 

(10**) 𝑉̂𝑒 = 𝑉𝑒′ + [𝑉𝑏𝑠,𝐿𝐷]   

(11**) 𝐶̂𝑔 + 𝐶̂𝑒 = 𝐶𝑔 + 𝐶𝑒′ + [2𝐶𝑏𝑠,𝑝𝑜𝑝] 

Here, 𝒆′ is the estimation error in 𝒃 due to both population stratification and sampling 

variationj; it is unfortunately not possible to disentangle these two sources of estimation 

error with this method. 

 Observation 3: the 𝑉𝑏𝑠,𝐿𝐷 and 𝐶𝑏𝑠,𝑝𝑜𝑝 terms capture the correlation between 𝑔 and 𝑆 (the 

bias in 𝑔̂ due to population stratification). It is possible to imagine conditions under which 

these terms would not be small. For instance, if subpopulations with a larger average 𝑔 

tend to have a higher 𝑃 (i.e., a better environment for the trait 𝑦), then 𝑔 and 𝑆 will tend 

to be positively correlated. However, it is also possible to imagine conditions under which 

these terms would be small or zero; in particular, if the score 𝑔̂ is not biased by 

population stratification, then 𝑆 = 0 and 𝑉𝑏𝑠,𝐿𝐷 = 𝐶𝑏𝑠,𝑝𝑜𝑝 = 0. In practice, it is difficult to 

assess how large the 𝑉𝑏𝑠,𝐿𝐷 and 𝐶𝑏𝑠,𝑝𝑜𝑝 terms are our data. 

                                                 
j Our 𝑉𝑒

′ and 𝐶𝑒
′  terms are slightly different from Wood et al.’s 𝑉𝑒 and 𝐶𝑒 terms because the sum in 𝑉𝑒

′ is over all SNPs that 

are in LD and the sum in 𝐶𝑒
′  is over all SNPs that are not in LD. 



 

 

Hence, we see that the estimators 𝑉̂𝑔, 𝑉̂𝑒, and 𝐶̂𝑔 + 𝐶̂𝑒 in Fig. 2 in Wood et al. and 

Supplementary Table 2.1 in this paper will be unbiased estimates (or nearly so) of 𝑉𝑔, 𝑉𝑒′, and 

𝐶𝑔 + 𝐶𝑒′ if (1) we can assume the 𝑉..,𝑝𝑜𝑝 terms to be small; (2) we properly interpret 𝑉̂𝑒  and 

𝐶̂𝑒 as estimates of 𝑉𝑒′ and 𝐶𝑒′; and (3) the 𝑉𝑏𝑠,𝐿𝐷 and 𝐶𝑏𝑠,𝑝𝑜𝑝 terms are small.  

It is important to note that large estimates of 𝐶𝑔 and 𝐶𝑒 do not imply that the score and the 

estimates from the GWAS are biased due to population stratification; indeed, 𝐶̂𝑔 and 𝐶̂𝑒 do 

not depend on 𝑆 (the bias in the predictor 𝑔̂ due to population stratification in the GWAS 

sample) and may be sizeable even when 𝑆 = 0. 𝐶𝑔 captures the extent to which Var(𝑔) is 

inflated due to the real effects of SNPs that are not in LD but are correlated in the 

independent validation sample owing to population stratification in that sample.  

As we show in Supplementary Information section 2.6, if 𝐶𝑔 or 𝐶𝑒 are nonzero and even if 

the score is unbiased (𝑆 = 0), the estimate of the coefficient on the score in an individual-

level regression of the phenotype 𝑦 on the score will be different from the corresponding 

estimate in a WF regression.  



 

 

 

 

2.5 Decomposition of the Variance of the Polygenic Score—Results 

To estimate 𝑉̂𝑔, 𝑉𝑒̂, and 𝐶̂𝑔 + 𝐶̂𝑒 as per Equations 13-16 from Wood et al., we used data on DZ 

twins from the Swedish Twin Registry (STR). There are 3515 DZ twins with both genotype 

and EA phenotype data, and the phenotypic correlation between DZ twins is 0.414, before 

adjustments for age and sex. The phenotype EduYears was adjusted for age in each gender 

PROOF that Cov(𝑥1𝑖, 𝑥2𝑗) =
1

2
Cov𝐿𝐷(𝑥𝑖 , 𝑥𝑗) + Cov𝑝𝑜𝑝(𝑥𝑖, 𝑥𝑗). 

Let 𝑥𝑖 = 𝑋𝑖
𝐹 + 𝑋𝑖

𝑀, where 𝑋𝑖
𝐹 and 𝑋𝑖

𝑀 are the alleles inherited from the father 𝐹 and 

the mother 𝑀, who are in the same subpopulation (we assume no assortative mating).  

Observe that  

Cov𝐿𝐷(𝑥𝑖 , 𝑥𝑗) = Cov𝐿𝐷(𝑋𝑖
𝐹 + 𝑋𝑖

𝑀, 𝑋𝑗
𝐹 + 𝑋𝑗

𝑀) 

= Cov𝐿𝐷(𝑋𝑖
𝐹 , 𝑋𝑗

𝐹) + Cov𝐿𝐷(𝑋𝑖
𝑀 , 𝑋𝑗

𝑀) = 2Cov𝐿𝐷(𝑋𝑖, 𝑋𝑗) 

and that  

Cov𝑝𝑜𝑝(𝑥𝑖, 𝑥𝑗) = Cov𝑝𝑜𝑝(𝑋𝑖
𝐹 + 𝑋𝑖

𝑀, 𝑋𝑗
𝐹 + 𝑋𝑗

𝑀) 

= Cov𝑝𝑜𝑝(𝑋𝑖
𝐹 , 𝑋𝑖

𝐹) + Cov𝑝𝑜𝑝(𝑋𝑖
𝑀, 𝑋𝑖

𝑀) + 2Cov𝑝𝑜𝑝(𝑋𝑖
𝐹, 𝑋𝑖

𝑀) = 4Cov𝑝𝑜𝑝(𝑋𝑖, 𝑋𝑗) 

(since M and F are from the same subpopulation).  

It follows that 

Cov(𝑥1𝑖, 𝑥2𝑗) = Cov(𝑋1𝑖
𝐹 + 𝑋1𝑖

𝑀 , 𝑋2𝑗
𝐹 + 𝑋2𝑗

𝑀)

= Cov(𝑋1𝑖
𝐹 , 𝑋2𝑗

𝐹 ) + Cov(𝑋1𝑖
𝑀 , 𝑋2𝑗
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𝐹 , 𝑋2𝑗

𝑀)   

= 2Cov(𝑋1𝑖
𝐹 , 𝑋2𝑗

𝐹 ) + 2Cov𝑝𝑜𝑝(𝑋𝑖, 𝑋𝑗)    

= 2𝐸[𝑋1𝑖
𝐹 ∙ 𝑋2𝑗

𝐹 ] + 2Cov𝑝𝑜𝑝(𝑋𝑖, 𝑋𝑗)    

= 2 (

1
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𝐹 , 𝑋2𝑗
𝐹 |𝑋1𝑖

𝐹 , 𝑋2𝑗
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𝐹  are from diff. grandparent)

) +
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Cov𝑝𝑜𝑝(𝑥𝑖, 𝑥𝑗) 

= (Cov(𝑋𝑖
𝐹 , 𝑋𝑗

𝐹) + Cov𝑝𝑜𝑝(𝑋𝑖, 𝑋𝑗)) +
1

2
Cov𝑝𝑜𝑝(𝑥𝑖 , 𝑥𝑗) 

= ((Cov𝐿𝐷(𝑋𝑖, 𝑋𝑗) + Cov𝑝𝑜𝑝(𝑋𝑖, 𝑋𝑗)) + Cov𝑝𝑜𝑝(𝑋𝑖, 𝑋𝑗)) +
1

2
Cov𝑝𝑜𝑝(𝑥𝑖, 𝑥𝑗) 

=
1
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Cov𝐿𝐷(𝑥𝑖, 𝑥𝑗) + Cov𝑝𝑜𝑝(𝑥𝑖, 𝑥𝑗). 

 

The equality on the second line follows from the fact that 

Cov(𝑋1𝑖
𝐹 , 𝑋2𝑗

𝐹 )=Cov(𝑋1𝑖
𝑀 , 𝑋2𝑗

𝑀), and the equality on the third line holds because the 

variables are assumed to have mean zero. 



 

 

group in each cohort separately and then standardized. The genotypes of all the individuals 

were imputed to 1000G reference panels. We estimated the principal components (PCs) from 

all the common variants on HapMap3 using GCTA7,8. We constructed polygenic scores (also 

known as “genetic predictors”) using the variants selected by GCTA-COJO and using their 

effect sizes re-estimated by GCTA-COJO. Supplementary Information section 5 provides 

more details on how the polygenic scores were constructed. 

 

We estimated 𝑉̂𝑔, 𝑉𝑒̂, and 𝐶̂𝑔 + 𝐶̂𝑒 using polygenic scores calculated with sets of SNPs 

meeting several different threshold P-values (5 × 10−8, 5 × 10−7, 5 × 10−6, 5 × 10−5, 5 ×
10−4) without adjusting for the PCs. We then replicated this analysis, this time adjusting the 

polygenic scores for the first 10 PCs. 

 

Supplementary Table 2.1 show that 𝐶̂𝑔 + 𝐶̂𝑒 is very small regardless of whether the predictor 

is adjusted for PCs or not. As discussed in the preceding subsection, if we can assume that the 

𝑉..,𝑝𝑜𝑝 terms are small (Observation 1), if we interpret 𝐶̂𝑒 as an estimator of 𝐶𝑒′ = 𝐶𝑒 + 𝐶𝑠 

(Observation 2), and if we can assume that the 𝑉𝑏𝑠,𝐿𝐷 and 𝐶𝑏𝑠,𝑝𝑜𝑝 terms are small 

(Observation 3), the results thus suggest that population structure in the STR does not 

account for much of the variance of the polygenic score. 

 

2.6 Significance of the Polygenic Scores in a WF regression 

To test the robustness of our all-SNPs polygenic score and of the polygenic scores calculated 

with sets of SNPs meeting several different threshold P-values (5 × 10−8, 5 × 10−7, 5 ×
10−6, 5 × 10−5, 5 × 10−4), we estimated WF regressions of EduYears on each polygenic 

score in samples that are independent from those used to construct the scores. Details of how 

these scores were constructed are found in Supplementary Information section 5. For each 

WF regression, we also compared the estimated coefficient on the polygenic score to the 

corresponding coefficient from individual-level regressions.  

Formally, let y denote the phenotype EduYears. As Wood et al. show, if we estimate the 

regression 𝑦 = 𝑔̂𝛽 + 𝜀 (where 𝑦 is EduYears, 𝑔̂ is the polygenic score, and 𝜀 is the error 

term) in an independent replication sample of individuals, then  

𝛽̂𝐿𝑒𝑣𝑒𝑙𝑠 =
Cov(𝑦,𝑔̂)

Var(𝑔̂)
=

𝑉𝑔+𝐶𝑔

𝑉𝑔+𝑉𝑒+𝐶𝑔+𝐶𝑒
. 

(We assume, as Wood et al. implicitly do, that 𝑆 = 0 and that Cov(𝑔, 𝑃) = 0.) 

However, if we estimate this regression using only the WF variation, 𝑦̈ = 𝑔̈̂𝛽 + 𝜀 (where 𝑦̈ =

Δ𝑦 and 𝑔̈̂ = Δ𝑔̂), then  

 𝛽̂𝑊𝐹 =
Cov(𝑦̈,𝑔̈̂)

Var(𝑔̈̂)
=

𝑉𝑔

𝑉𝑔+𝑉𝑒
. 

(We assume, as Wood et al. implicitly do, that 𝑆 = 0 and that the 𝑉..,𝑝𝑜𝑝 terms are negligible).  

Thus, we see that if 𝐶𝑔 or 𝐶𝑒 are nonzero and even if the score is unbiased (𝑆 = 0), the 

estimate of the coefficient on the score in an individual-level regression of 𝑦 on the score will 

be different from the corresponding estimate in a WF regression. As Supplementary Table 



 

 

2.1 shows, estimates of 𝐶𝑔 are quite sizeable relative to estimates of 𝑉𝑔 for the scores based 

on less significant SNPs, so we expect to see 𝛽̂𝑊𝐹 to be smaller relative to 𝛽̂𝐿𝑒𝑣𝑒𝑙𝑠 for the 

scores based on less significant SNPs.  

Importantly, because we estimated both the individual-level and the WF regressions in 

samples that are independent of those used to construct the score, the estimates 𝛽̂𝑊𝐹 and 

𝛽̂𝐿𝑒𝑣𝑒𝑙𝑠 will differ from zero if and only if the scores capture at least some true effects of the 

SNPs. 

For both our all-SNPs polygenic score and the polygenic scores calculated with sets of SNPs 

meeting several different threshold P-values, we estimated individual-level and WF 

regressions in the subset of DZ twin pairs in the STR, controlling for age, age squared, and 

gender. To make the estimated coefficients directly comparable, we used the exact same 

sample of DZ twin pairs for all regressions. There were 2,722 DZ twin pairs with both 

genotype and EA phenotype data. 

Extended Data Fig. 3b and Supplementary Table 2.2 report the results. For every polygenic 

score, the estimated coefficient on the polygenic score from the WF regression is statistically 

distinguishable from zero, further confirming that our GWAS uncovered some true polygenic 

signal. As expected, the estimated individual-level coefficient is significantly larger than the 

WF coefficient for the scores based on less significant SNPs, which is consistent with 𝐶𝑔 

being sizeable for those scores in the STR.k Thus, these results indicate that the score 

captures true polygenic signal but do not allow us to draw firm conclusions about the extent 

to which the score is biased due to population stratification. 

(We note that it is difficult to compare the R2’s from the individual-level and WF regressions, 

since the R2 from the latter depends on both the covariance between the polygenic scores and 

between the error terms within twin pairs, which are not known quantities; for that reason, we 

refrain from doing such a comparison.) 
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3 Genetic Overlap  

3.1 Introduction 

 

Previous work using twin data suggests that educational attainment may share genetic 

pathways in common with other phenotypes1–5. Here, we follow our pre-registered analysis 

plan (https://osf.io/p95cq/) to explore such relationships further using GWAS results.  

 

As a first step, we estimate genetic overlap between EA and several other phenotypes. We 

define genetic overlap as the degree to which common regions of the genome are associated 

with different traits, i.e., the extent to which multiple phenotypes are associated with the same 

underlying genetic variants. Instead of relying on family data or individual-level genetic data, 

we estimate genetic overlap using the LD Score Regression procedure developed by Bulik-

Sullivan et al6. Note that this procedure does not require that the GWAS samples are 

independent. In addition, we develop another SNP-based estimate of genetic overlap based on 

different assumptions that requires GWAS results from independent samples as inputs. This 

new measure of genetic overlap is conceptually similar, but not identical, to the measure 

estimated in bivariate GREML7. We compare the different measures of genetic overlap 

theoretically and empirically. 

 

Next, we systematically investigate evidence of genetic overlap between EA and phenotypes 

related to (1) mental health and psychometric traits (including general cognitive performance 

and neuroticism), (2) brain anatomy, and (3) anthropometric traits. Henceforth, we refer to 

these phenotypes collectively as “MHBA” phenotypes. We chose to include in the analysis 

phenotypes for which the phenotypic correlation between EA and the trait has previously 

been establishedl and GWAS summary statistics of the trait are available in the public 

domain. The final list of phenotypes includes: Alzheimer’s disease8, bipolar disorder9, 

schizophrenia10, cognitive performance11,12, neuroticism13, volumes of subcortical brain 

regions and total intracranial volume14,m, BMI15, and height16. The links we used to access the 

GWAS results for these traits are listed in Supplementary Table 3.1. 

 

We complement our estimates of SNP-based genetic overlap by looking up the lead (i.e., 

genome-wide significant) EA-associated SNPs in the GWAS results for the MHBA 

phenotypes.  

  

                                                 
l Evidence for phenotypic correlation with EA has previously been reported for Alzheimer’s disease70–77, bipolar 

disorder19,20,55, schizophrenia52,54,55,59,78,60, cognitive performance12,79,80, neuroticism32,81,82, hippocampus83,84, caudate85, brain 

volume4,86–88, BMI37–41, and height89–94.  
m The ENIGMA214 GWAS summary statistics that were available to us also included the amygdala. However, we omit the 

amygdala from our analyses because estimates of genetic overlap between EA and amygdala volume result in a negative 

heritability estimate, whereas heritability estimates should, by definition, be restricted to the 0-1 interval. Because the 

estimated heritability is negative, both estimates of genetic overlap we report are undefined for this phenotype. The obtained 

estimate is imprecisely estimated, suggesting that the negative sign may be due to lack of statistical power in the original 

GWA study. 

https://osf.io/p95cq/


 

 

 

3.2 Estimating Genetic Overlap 

3.2.1  An Approach Based on Z-statistics from GWAS Meta-Analysis in Independent 

Samples 

 

There are several ways that one might measure genetic overlap. Below we define a measure 

based on the correlation of SNPs’ (true) effect sizes for two traits. We then develop an 

asymptotically unbiased estimator of our genetic-overlap parameter that is only a function of 

GWAS summary statistics. Advantages of our measure include: (1) it has a straightforward 

interpretation (it is the correlation of GWAS parameters), (2) it requires only GWAS 

summary statistics (not individual-level data), and (3) it is computationally fast to estimate. 

 

3.2.1.1 Theoretical Framework 

 

In order to define our measure, we let 𝑌𝑖 and 𝑍𝑖, denote the values of two phenotypes for 

some individual 𝑖. Projecting these phenotypes onto a constant and the genotype for a single 

SNP 𝑗 gives us the population parameters corresponding to a GWAS analysis (i.e., a set of 

univariate regressions). More precisely, for each SNP 𝑗, consider the population regressions 

 

𝑌𝑖 = 𝛽0,𝑗 + 𝑔𝑖,𝑗𝛽𝑗 + 𝜀𝑌𝑖𝑗 

𝑍𝑖 = 𝛼0,𝑗 + 𝑔𝑖,𝑗𝛼𝑗 + 𝜀𝑍𝑖𝑗, 
 

where 𝑔𝑖,𝑗 is the genotype of SNP 𝑗 for individual 𝑖 as measured by the allele count for a 

particular reference allele at the locus. Let Var(𝜀𝑌𝑖𝑗) = 𝜎𝑌𝑗
2  and Var(𝜀𝑍𝑖𝑗) = 𝜎𝑍𝑗

2 . Define 𝜷 to 

be the vector of all of the 𝛽𝑗’s, 𝜶 to be the vector of all of the 𝛼𝑗’s, and 𝒈𝑖 to be the vector of 

all of the 𝑔𝑖,𝑗’s, where all the vectors have length 𝑝. Finally, denote the variance-covariance 

matrix of 𝒈𝑖 by Ω𝒈, and let 𝑫𝒈 denote the matrix of diagonal entries of Ω𝒈. 

 

We define our measure of genetic overlap to be 

 

𝑟 ≡
𝜷′𝑫𝒈𝜶

√𝜷′𝑫𝒈𝜷𝜶′𝑫𝒈𝜶

. 

 

We note that this measure is independent of whether or not the genotypes are measured in 

standard-deviation units. To see this, suppose we calculate our measure using as the 

transformed genotypes 𝑔̃𝑖,𝑗 ≡ 𝑔𝑖,𝑗/𝐷𝑗𝑗
1/2

. In that case, the model becomes 

 

𝑌𝑖 = 𝛽0,𝑗 + (𝑔̃𝑖,𝑗)(𝐷𝑗𝑗
1/2

𝛽𝑗) + 𝜀𝑌𝑖𝑗  

𝑍𝑖 = 𝛼0,𝑗 + (𝑔̃𝑖,𝑗)(𝐷𝑗𝑗
1/2

𝛼𝑗) + 𝜀𝑍𝑖𝑗. 

 

Defining 𝜷̃ ≡ 𝑫𝒈
1/2

𝜷 and 𝜶̃ ≡ 𝑫𝒈
1/2

𝜶, we calculate 𝑟 to be 

 



 

 

𝑟 =
𝜷̃′𝜶̃

√𝜷̃′𝜷̃𝜶̃′𝜶̃

, 

 

where 𝑫𝑔 vanishes from the expression because it is now the identity matrix. This value of 𝑟 

is clearly the same as before. 

 

There are at least two ways to interpret this measure: 

 

1. It is the correlation of the effect sizes 𝜷̃ and 𝜶̃ that are associated with genotypes 

measured in standard-deviation units. To be precise, it is the “uncentered correlation”: 

the formula used for correlation when the variables have mean zero (even though 𝜷̃ 

and 𝜶̃ may not have mean zero). Below, we discuss some justifications for 

uncenteredness. 

2. Alternatively, it may be thought of as a weighted, uncentered correlation of 𝜷 and 𝜶 

that gives greater weight to (𝛽𝑗, 𝛼𝑗) pairs that correspond to SNPs whose genotypes 

have greater variance.  

Note that our measure of genetic overlap, 𝑟, has some intuitive properties: the genetic overlap 

of a trait with itself is equal to one, the genetic overlap of two traits that share no associated 

SNPs is equal to zero, and the genetic overlap of two traits where every SNP has an opposite 

effect is negative one. 

 

Our measure also has the property that 𝐸[𝛼𝑗|𝑟, 𝛽𝑗] = 𝐶𝑟𝛽𝑗, where 𝐶 is a scaling constant 

equal to the ratio of the variance of 𝛼𝑗 to the variance of 𝛽𝑗. That is, if two traits exhibit high 

genetic overlap as measured by 𝑟 and one trait is strongly associated with some SNP, then the 

other trait will also be likely to be associated with that SNP—and the predicted magnitude of 

the association is a linear function of the magnitude of the association for the first trait. 

 

As noted above, our measure of genetic overlap is an uncentered correlation. The choice of 

using an uncentered correlation was made for both practical and theoretical reasons. While 

the magnitudes of 𝛽𝑗 and 𝛼𝑗 (the effect sizes corresponding to SNP 𝑗) are constant, their signs 

are determined by the arbitrary choice of reference allele. Using the uncentered correlation 

makes 𝑟 invariant to the choice of reference allele for each SNP, which is a desirable property 

of a genetic overlap parameter.n As a theoretical justification for this property, if we think of 

each 𝛽𝑗 and 𝛼𝑗 as random variables that have fixed magnitudes but whose reference allele is 

random with an equal chance of being either allele, the expected value of 𝛽𝑗 and 𝛼𝑗 will 

indeed be zero. 

 

We further highlight that 𝑟 is a population parameter and not a sample statistic (since it is a 

function of population parameters). In the following subsection, we will discuss how one 

might estimate the parameter 𝑟 using GWAS data. 

 

                                                 
n Imagine that we switch reference allele at SNP 𝑗. This will flip the sign of 𝛽𝑗  and 𝛼𝑗 . Using an uncentered correlation, this 

transformation of 𝑟 will cancel itself out since every instance of 𝛽𝑗  and 𝛼𝑗  is either squared or multiplied with each other. If 

we instead used a centered correlation, switching the reference allele would not only flip the sign of the relevant 𝛽𝑗  and 𝛼𝑗 , 

but it would also cause the mean of 𝜷 and 𝜶 to shift slightly. The impact of this shift on 𝑟 would depend on how 𝛽𝑗 , 𝛼𝑗 , the 

mean of 𝜷, and the mean of 𝜶 all compare to one another. 



 

 

3.2.1.2 Estimation 

 

If the true parameters 𝜷, 𝜶, and 𝑫 were known, calculating 𝑟 would be straightforward. Here, 

however, we will show that simply taking the sample analog of 𝑟—the uncentered correlation 

of the t-statistics from the GWAS analyses of the two traits—would yield an attenuated 

estimate of 𝑟. Intuitively, the sampling errors in the estimates of 𝜷 and 𝜶 generate an 

attenuation bias analogous to what occurs in regression analyses when there is measurement 

error in the independent variable. However, we will also show that the degree of attenuation 

is a function of the amount of sampling variance in the sum of the t-statistics. This sum is 

simply equal to the number of SNPs used in the analysis, which is known, and therefore the 

attenuation bias can be corrected for. 

 

To begin, we define the variables that we will use in our analysis. We first assume that 𝜷 and 

𝜶 are estimated from non-overlapping samples of size 𝑛𝑌 and 𝑛𝑍, respectively. Therefore, we 

can express the GWAS estimates as  

 

𝜷̂ = 𝜷 + 𝑼 
𝜶̂ = 𝜶 + 𝑽, 

 

where 𝑼 and 𝑽 are the estimation errors. By the properties of OLS, E(𝑼) = E(𝑽) = 𝟎, 

Var(𝑈𝑗) =
𝜎𝑌𝑗

2

𝑛𝑌𝐷𝑗𝑗
, and Var(𝑉𝑗) =

𝜎𝑍𝑗
2

𝑛𝑍𝐷𝑗𝑗
. Since 𝜷̂ and 𝜶̂ are estimated from non-overlapping 

samples, 𝑼 and 𝑽 are independent. Throughout the following derivation, we often use the 

approximations 𝜎𝑌𝑗
2 ≈ Var(𝑌𝑖) and 𝜎𝑍𝑗

2 ≈ Var(𝑍𝑖). These approximations hold because the 

variance explained by any individual SNP is very small relative to the residual variance of the 

phenotype (𝜎𝑌𝑗
2  or 𝜎𝑍𝑗

2 ). 

 

Define 𝑺𝛽 to be the diagonal matrix whose entries are the standard errors for 𝜷̂, and define 𝑺𝛼 

analogously. Thus, 𝑺𝛽
−1𝜷̂ and 𝑺𝛼

−1𝜶̂ are the vectors of t-statistics for 𝜷̂ and 𝜶̂. By the 

properties of OLS,  

 

𝑆𝛽𝑗𝑗 = √
𝜎𝜀𝑌

2

𝑛𝑌 − 2

𝐾𝛽𝑗

𝑊𝛽𝑗
 

𝑆𝛼𝑗𝑗 = √
𝜎𝜀𝑍

2

𝑛𝑍 − 2

𝐾𝛼𝑗

𝑊𝛼𝑗
 

 

where 

 

𝐾𝛽𝑗~𝑥𝑛𝑌−2
2  

𝐾𝛼𝑗~𝑥𝑛𝑍−2
2  

𝑊𝛽𝑗~𝑊(𝐷𝑗𝑗 , 𝑛𝑌) 

𝑊𝛼𝑗~𝑊(𝐷𝑗𝑗 , 𝑛𝑍) 

 

with 𝑊(∙) being the Wishart distribution. Also by the properties of OLS, the random 

variables 𝑼, 𝑽, 𝑺𝛽, and 𝑺𝛼 are all independent. 

 



 

 

With this setup, first note that a naïve estimator of 𝑟 is 

 

𝑟̂𝑛𝑎𝑖𝑣𝑒 =
𝜷̂′𝑺𝛽

−1𝑺𝛼
−1𝜶̂

√(𝜷̂′𝑺𝛽
−2𝜷̂)(𝜶̂′𝑺𝛼

−2𝜶̂)

. 

 

We see that the denominator will contain expressions of the form 𝛽̂𝑗
2. Since these expressions 

include estimation error, they will be larger in expectation than their population analogue 𝛽𝑗. 

The naïve estimator would therefore suffer from an attenuation bias: |𝐸(𝑟̂𝑛𝑎𝑖𝑣𝑒)| < |𝑟|. 
 

We instead use as our estimator an adjusted version of the naïve estimator, in which the 

number of SNPs in our analysis, 𝑝, is subtracted from each term in the denominator: 

 

𝑟̂ =
𝜷̂′𝑺𝛽

−1𝑺𝛼
−1𝜶̂

√(𝜷̂′𝑺𝛽
−2𝜷̂ − 𝑝)(𝜶̂′𝑺𝛼

−2𝜶̂ − 𝑝)

, 

 

Intuitively, the amount of measurement error in each SNP’s estimated coefficient 𝛽̂𝑗 is its 

standard error, 𝑆𝛽𝑗𝑗. Put more formally, 𝛽̂𝑗
2 will, in expectation, overestimate 𝛽𝑗

2 by the 

amount 𝑆𝛽𝑗𝑗
2 . Thus, the squared estimated coefficient measured in standard-deviation units, 

𝛽̂𝑗
2/𝑆𝛽𝑗𝑗

2 , will overestimate 𝛽𝑗
2/𝑆𝛽𝑗𝑗

2  by 1. Adding up across the SNPs in the analysis gives a 

total amount of error of p. Thus, subtracting p debiases the estimate of the first term in the 

denominator. Similarly for the second term. 

 

In what follows, we prove asymptotic unbiasedness of 𝑟̂ formally. To begin: 

 

E(𝑟̂) = E

[
 
 
 𝜷̂′𝑺𝛽

−1𝑺𝛼
−1𝜶̂

√(𝜷̂′𝑺𝛽
−2𝜷̂ − 𝑝)(𝜶̂′𝑺𝛼

−2𝜶̂ − 𝑝)
]
 
 
 

 

= E

[
 
 
 (𝜷′ + 𝑼′)𝑺𝛽

−1𝑺𝛼
−1(𝜶 + 𝑽)

√[(𝜷′ + 𝑼′)𝑺𝛽
−2(𝜷 + 𝑼) − 𝑝][(𝜶′ + 𝑽′)𝑺𝛼

−2(𝜶 + 𝑽) − 𝑝]
]
 
 
 

 

= E

[
 
 
 𝜷′𝑺𝛽

−1𝑺𝛼
−1𝜶 + 𝑼′𝑺𝛽

−1𝑺𝛼
−1𝜶 + 𝜷′𝑺𝛽

−1𝑺𝛼
−1𝑽 + 𝑼′𝑺𝛽

−1𝑺𝛼
−1𝑽

√(𝜷′𝑺𝛽
−2𝜷 + 2𝑼′𝑺𝛽

−2𝜷 + 𝑼′𝑺𝛽
−2𝑼 − 𝑝)(𝜶′𝑺𝛼

−2𝜶 + 2𝑽′𝑺𝛼
−2𝜶 + 𝑽′𝑺𝛼

−2𝑽 − 𝑝)
]
 
 
 

. 

 

From here, we use the conventional approximations E (
𝐴

√𝐵
) ≈ E(𝐴)𝐸 (

1

√𝐵
) ≈

E(𝐴)

√E(𝐵)
. The 

precision of these approximations is inversely related to the variances of 𝐴 and 𝐵. Since the 

variance in 𝐴 and 𝐵 declines as the sample size increases, these approximations will 

asymptotically become arbitrarily good. With these considerations in mind, we continue our 

derivation: 

 

 



 

 

E(𝑟̂) ≈
E(𝜷′𝑺𝛽

−1𝑺𝛼
−1𝜶 + 𝑼′𝑺𝛽

−1𝑺𝛼
−1𝜶 + 𝜷′𝑺𝛽

−1𝑺𝛼
−1𝑽 + 𝑼′𝑺𝛽

−1𝑺𝛼
−1𝑽)

√E[(𝜷′𝑺𝛽
−2𝜷 + 2𝑼′𝑺𝛽

−2𝜷 + 𝑼′𝑺𝛽
−2𝑼 − 𝑝)(𝜶′𝑺𝛼

−2𝜶 + 2𝑽′𝑺𝛼
−2𝜶 + 𝑽′𝑺𝛼

−2𝑽 − 𝑝)]

 

=
𝜷′E(𝑺𝛽

−1𝑺𝛼
−1)𝜶 + E(𝑼′)E(𝑺𝛽

−1𝑺𝛼
−1)𝜶 + 𝜷′E(𝑺𝛽

−1𝑺𝛼
−1)E(𝑽) + E(𝑼′)E(𝑺𝛽

−1𝑺𝛼
−1)E(𝑽)

√(𝜷′E(𝑺𝛽
−2)𝜷 + 2E(𝑼′)E(𝑺𝛽

−2)𝜷 + E(𝑼′𝑺𝛽
−2𝑼) − 𝑝)[𝜶′E(𝑺𝛼

−2)𝜶 + 2E(𝑽′)E(𝑺𝛼
−2)𝜶 + E(𝑽′𝑺𝛼

−2𝑽) − 𝑝]

 

=
𝜷′E(𝑺𝛽

−1𝑺𝛼
−1)𝜶

√[𝜷′E(𝑺𝛽
−2)𝜷 + E(𝑼′𝑺𝛽

−2𝑼) − 𝑝][𝜶′E(𝑺𝛼
−2)𝜶 + E(𝑽′𝑺𝛼

−2𝑽) − 𝑝]

. 

 

The second line follows from the independence of 𝑼 and 𝑽, and the third uses E(𝑼) =
E(𝑽) = 𝟎. 

 

To complete this derivation, we must evaluate each of these expectations. By the 

properties of the random variables defined above, we have 

 

E(𝑆𝛽𝑗
−1𝑆𝛼𝑗

−1) = E (√
𝑛𝑌 − 2

𝜎𝜀𝑌
2

𝑊𝛽𝑗

𝐾𝛽𝑗
√

𝑛𝑍 − 2

𝜎𝜀𝑍
2

𝑊𝛼𝑗

𝐾𝛼𝑗
) 

= √
(𝑛𝑌 − 2)(𝑛𝑍 − 2)

𝜎𝜀𝑌
2 𝜎𝜀𝑍

2 E (√𝑊𝛽𝑗) E (√
1

𝐾𝛽𝑗
) E(√𝑊𝛼𝑗)E (√

1

𝐾𝛼𝑗
) 

= √
(𝑛𝑌 − 2)(𝑛𝑍 − 2)

𝜎𝜀𝑌
2 𝜎𝜀𝑍

2 (
Г (

𝑛𝑌

2 +
1
2)

√2Г (
𝑛𝑌

2 )
√𝐷𝑗𝑗)(

Г (
𝑛𝑌 − 2

2 −
1
2)

√2Г (
𝑛𝑌 − 2

2 )
)(

Г (
𝑛𝑍

2 +
1
2)

√2Г (
𝑛𝑍

2 )
√𝐷𝑗𝑗)(

Г (
𝑛𝑍 − 2

2 −
1
2)

√2Г (
𝑛𝑍 − 2

2 )
) 

= √
(𝑛𝑌 − 2)(𝑛𝑍 − 2)

𝜎𝜀𝑌
2 𝜎𝜀𝑍

2 (
Г (

𝑛𝑌

2 +
1
2)

√2Г (
𝑛𝑌

2 )
)(

Г (
𝑛𝑌 − 2

2 −
1
2)

√2Г (
𝑛𝑌 − 2

2 )
)(

Г (
𝑛𝑍

2 +
1
2)

√2Г(
𝑛𝑍

2 )
)(

Г (
𝑛𝑍 − 2

2 −
1
2)

√2Г (
𝑛𝑍 − 2

2 )
)𝐷𝑗𝑗  

→ √
(𝑛𝑌 − 2)(𝑛𝑍 − 2)

𝜎𝜀𝑌
2 𝜎𝜀𝑍

2 (√𝑛𝑌) (√
1

𝑛𝑌 − 2
) (√𝑛𝑍) (√

1

𝑛𝑍 − 2
)𝐷𝑗𝑗  

= √
𝑛𝑌𝑛𝑍

𝜎𝜀𝑌
2 𝜎𝜀𝑍

2 𝐷𝑗𝑗 . 

 

In these lines of algebra, the second equality follows from the independence of each of these 

random variables. The approximation uses lim
𝑥→∞

Г(𝑥+𝛼)

Г(𝑥)𝑥𝛼 = 1. This calculation implies that 

 

E(𝑆𝛽𝑗
−1𝑆𝛼𝑗

−1) → √
𝑛𝑌𝑛𝑍

𝜎𝜀𝑌
2 𝜎𝜀𝑍

2 𝐷𝑗𝑗 . 

 

Also using independence, we have 

 



 

 

E(𝑆𝛽𝑗
−2) = E (

𝑛𝑌 − 2

𝜎𝜀𝑌
2

𝑊𝛽𝑗

𝐾𝛽𝑗
) 

=
𝑛𝑌 − 2

𝜎𝜀𝑌
2 E(𝑊𝛽𝑗)E (

1

𝐾𝛽𝑗
) 

=
𝑛𝑌 − 2

𝜎𝜀𝑌
2 (𝑛𝑌𝐷𝑗𝑗) (

1

𝑛 − 4
) 

=
(𝑛𝑌 − 2)𝑛𝑌

(𝑛𝑌 − 4)𝜎𝜀𝑌
2 𝐷𝑗𝑗  

→
𝑛𝑌

𝜎𝜀𝑌
2 𝐷𝑗𝑗 . 

 

and 

 

E(𝑆𝛼𝑗
−2) =

(𝑛𝑍 − 2)𝑛𝑍

(𝑛𝑍 − 4)𝜎𝜀𝑍
2 𝐷𝑗𝑗  

→
𝑛𝑍

𝜎𝜀𝑍
2 𝐷𝑗𝑗 , 

 

which imply  

E(𝑆𝛽
−2) → (

𝑛𝑌

𝜎𝜀𝑌
2 𝐷𝑔) 

E(𝑆𝛼
−2) → (

𝑛𝑌

𝜎𝜀𝑌
2 𝐷𝑔). 

 

Lastly,  

 

 

E(𝑈𝑗
2𝑆𝛽𝑗

−2) = E(𝑈𝑗
2)E(𝑆𝛽𝑗

−2) 

=
𝜎𝜀𝑌

2

𝑛𝑌𝐷𝑗𝑗

(𝑛𝑌 − 2)𝑛𝑌

(𝑛𝑌 − 4)𝜎𝜀𝑌
2 𝐷𝑗𝑗  

=
(𝑛𝑌 − 2)

(𝑛𝑌 − 4)
 

→ 1, 
 

and 

E(𝑉𝑗
2𝑆𝛼𝑗

−2) =
(𝑛𝑌 − 2)

(𝑛𝑌 − 4)
 

→ 1. 
 

It follows from these last two asymptotic results that 

 

E(𝑼′𝑺𝛽
−2𝑼) ≈ E(𝑽′𝑺𝛼

−2𝑽) → 𝑝. 

 

where (as a reminder) 𝑝 is the number of SNPs in 𝜷 and 𝜶. 

 

Substituting all of these asymptotic values from above, 

 



 

 

E(𝑟̂) ≈
𝜷′E(𝑺𝛽

−1𝑺𝛼
−1)𝜶

√[𝜷′E(𝑺𝛽
−2)𝜷 + E(𝑼′𝑺𝛽

−2𝑼) − 𝑝][𝜶′E(𝑺𝛼
−2)𝜶 + E(𝑽′𝑺𝛼

−2𝑽) − 𝑝]

 

≈

𝜷′ (√
𝑛𝑌𝑛𝑍

𝜎𝜀𝑌
2 𝜎𝜀𝑍

2 𝑫𝑔)𝜶

√[𝜷′ (
𝑛𝑌

𝜎𝜀𝑌
2 𝑫𝑔)𝜷 + 𝑝 − 𝑝] [𝜶′ (

𝑛𝑍

𝜎𝜀𝑍
2 𝑫𝑔)𝜶 + 𝑝 − 𝑝]

 

=
√

𝑛𝑌𝑛𝑍

𝜎𝜀𝑌
2 𝜎𝜀𝑍

2 𝜷′𝑫𝑔𝜶

√
𝑛𝑌𝑛𝑍

𝜎𝜀𝑌
2 𝜎𝜀𝑍

2 √𝜷′𝑫𝑔𝜷𝜶′𝑫𝑔𝜶
 

=
𝜷′𝑫𝑔𝜶

√𝜷′𝑫𝑔𝜷𝜶′𝑫𝑔𝜶
 

= 𝑟. 
 

Therefore, our estimator for 𝑟 is, in fact, asymptotically unbiased. 

 

Calculating analytic standard errors for this estimator is complicated because the functional 

form is nonlinear and because accounting for LD requires an estimate of the LD structure of 

the whole genome.  

 

Since our approach requires that the GWAS meta-analyses have been conducted in 

independent samples for each of the two traits, for each MHBA phenotype, we re-run the 

meta-analysis for EduYears excluding any cohorts that were part of the meta-analysis of the 

respective MHBA phenotype. This procedure does not correct for potential sample overlap or 

relatedness of individuals between cohorts. Most published GWAS results are currently based 

on HapMap 2 imputation. Hence, our analyses include all HapMap 2 SNPs that are a subset 

of 1000 Genomes imputation (which is the imputation protocol used for our GWAS on 

EduYears).  

 

3.2.2 Estimating Genetic Overlap Using LD Score Regression 

 

The main estimates of genetic overlap between EA and MHBA phenotypes that we report in 

the main text are based on the LD Score method developed by Bulik-Sullivan et al. (2015)6 

and implemented in their LDSC python software package. This approach relies on an LD 

Score regression17 and only requires GWAS summary statistics for all SNPs in the GWAS 

and a reference sample from which LD can be estimated. Formally, the method is based on 

the relationship: 

 

𝐸[𝑧1𝑗𝑧2𝑗] =
√𝑁1𝑁2

𝑀
ℓ𝑗𝜌𝑔 + 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 

 

where 𝑧𝑘𝑗 is the Z-statistic of SNP j from the GWAS of trait k (k = 1, 2), Nk is the sample size 

of the GWAS of trait k, ℓj is the LD Score of SNP j, M is the number of SNPs included in the 

GWAS, 𝜌𝑔 is the genetic covariance between traits 1 and 2, and Intercept is the regression 

intercept. Finucane et al. (2015)18 show that this relationship holds under a polygenic model. 



 

 

LDSC runs the regression of 𝑧̂1𝑗𝑧̂2𝑗 on √𝑁1𝑁2ℓj implied by this model and obtains an 

estimate of 𝜌𝑔 from the estimated regression slope coefficient. It also runs separate LD Score 

regressions for traits 1 and 2 and estimates their heritability parameters ℎ𝑔1
2  and ℎ𝑔2

2  as the 

estimated regression slope coefficients. Finally, it uses all of these estimates to compute the 

genetic correlation as  

 

𝑟𝐿𝐷̂ =
 𝜌̂𝑔

√ℎ̂𝑔1
2 ℎ̂𝑔2

2

. 

 

As Bulik-Sullivan et al.6 note, the genetic covariance and heritability estimates from LDSC 

will be biased if genomic control (GC) correction has been applied at any stage to the GWAS 

summary statistics. However, the biases cancel out in the calculation of 𝑟𝐿𝐷̂, so as an 

estimator 𝑟𝐿𝐷̂ is not biased. (Below, we do not report estimates of heritability obtained with 

LDSC because they are biased.) 

 

We use the “eur_w_ld_chr/” files of LD Scores calculated by Finucane et al. (2015)18 and 

made available on https://github.com/bulik/ldsc/wiki/Genetic-Correlation. These LD Scores 

were computed with genotypes from the European-ancestry samples in the 1000 Genomes 

Project using only HapMap3 SNPs. In our LD Score regressions, we include only HapMap3 

SNPs with MAF > 0.01 to restrict the analyses to SNPs that are likely to be imputed with 

reasonable accuracy across all cohorts that contributed to the meta-analyses. 

 

The standard errors are estimated (by the LDSC software) using a block jackknife over SNPs. 

As such, they should be interpreted as the variability of the estimate holding the sample 

constant but drawing a new set of SNPs. This is in contrast to the conventional interpretation 

of standard errors, which measure the variability of the estimate holding the covariates 

constant but drawing new sets of individuals. Ideally we would have standard errors that 

represent the latter, but it is unclear how one might obtain such estimates with the available 

data. For this reason, we report the block jackknife errors as in Bulik-Sullivan et al.6, but we 

note that they may be only loosely related to conventional standard errors. 

 

3.2.3  Results 

 

In Fig. 2 in the main text, we report the estimates of genetic overlap from the LD Score 

regression, along with 95% confidence intervals. In Supplementary Table 3.1, we report 

estimation results from both methods described above. Cognitive performance shows the 

strongest genetic overlap with EduYears (r = 0.82 & rLD = 0.75). We also find substantial 

genetic overlap for mental health phenotypes, in particular for neuroticism (-0.37 & -0.41), 

Alzheimer’s disease (-0.20 & -0.31), and bipolar disorder (0.25 & 0.28). The positive genetic 

overlap between EduYears and bipolar disorder is noteworthy given that the phenotypic 

correlation is negative19,20. 

 

Furthermore, we see substantial positive genetic overlap for intracranial volume (0.39 & 

0.34) and height (0.16 & 0.13), as well as a strong negative overlap for BMI (-0.44 & -0.26).  

 

Note that the two methods yield identical signs for all MHBA phenotypes, except those 

which have estimates close to zero (accumbens, hippocampus, pallidum). Furthermore, the 

https://github.com/bulik/ldsc/wiki/Genetic-Correlation


 

 

estimated coefficients from both methods are almost perfectly correlated (r = 0.97). Note also 

that our results are consistent with those of Bulik-Sullivan et al.6 for the phenotypes we study 

in common. (The phenotypes studied here, but not in Bulik-Sullivan et al.6, are cognitive 

performance, neuroticism, and the seven brain volume phenotypes.)  

 

3.2.4 Comparing the Measures of Genetic Overlap 

 

We will compare three measures of genetic overlap: (1) 𝑟, our new measure defined above; 

(2) 𝑟𝐿𝐷, the measure derived from the LD Score regression; and (3) the correlation of the true 

polygenic scores for the corresponding traits (i.e., the polygenic scores that would be 

estimated in an infinite sample). These methods differ from one another in the way they deal 

with LD, although they are equivalent under some assumptions, as we show below. 

 

For two traits 𝑦𝑖 and 𝑧𝑖, we define 𝒃̃ and 𝒂̃ as the respective vectors of true SNP coefficients 

in a model that fits all of the SNPs at once. That is, 

 

𝑦𝑖 = 𝒙̃𝑖𝒃̃ + 𝑒𝑦𝑖
 

𝑧𝑖 = 𝒙̃𝑖𝒂̃ + 𝑒𝑧𝑖
, 

 

where 𝒙̃𝑖 is the standardized genotype vector of individual 𝑖, and 𝑒𝑦𝑖
 and 𝑒𝑧𝑖

 are the residuals 

of these models. Throughout, we use tildes over variables to denote standardized variables, 

the coefficients associated with standardized variables (note that these are different from 

standardized coefficients), and the variances and covariances associated with standardized 

variables. As before, we define Ω̃ as the variance-covariance matrix of 𝒙̃𝑖. 

 

3.2.4.1 The 𝑟 Measure of Genetic Overlap 

 

Since our genotypes are standardized, 𝑟 can be expressed as 

 

𝑟 =
𝜷̃′𝜶̃

√𝜷̃′𝜷̃𝜶̃′𝜶̃

. 

 

Applying the equation for the OLS estimator, 𝜷̃ and 𝒃̃ have the simple relationship 

 

𝜷̃ = [diag(𝜴̃)]
−1

Cov(𝒙̃𝑖, 𝑦𝑖) 

= Cov(𝒙̃𝑖, 𝑦𝑖) 
= 𝜴̃𝜴̃−1Cov(𝒙̃𝑖, 𝑦𝑖) 

= 𝜴̃𝒃̃. 
 

Similarly,  

 

𝜶̃ = 𝜴̃𝒂̃. 
 

Using these substitutions, we have 

 



 

 

𝑟 =
𝒃̃′𝜴̃2𝜶̃

√𝒃̃′𝜴̃2𝒃̃𝜶̃′𝜴̃2𝜶̃
. 

 

 

3.2.4.2 The 𝑟𝐿𝐷 Measure of Genetic Overlap 

 

Under the assumption that the effect sizes 𝑎̃𝑗, 𝑏̃𝑗 are random and independent from each other 

and from the allele frequency and LD structure of their corresponding SNP—assumptions 

maintained by Bulik-Sullivan et al.6 throughout their derivations—it can be shown that 𝑟𝐿𝐷 

can be expressed as 

 

𝑟𝐿𝐷 =
Cov(𝑏̃𝑗, 𝑎̃𝑗)

√Var(𝑏̃𝑗)Var(𝑎̃𝑗)

 

=
𝒃̃′𝜶̃

√𝒃̃′𝒃̃𝜶̃′𝜶̃
. 

 

This equation can be rewritten as 

 

𝑟𝐿𝐷 =
𝒃̃′𝜴̃0𝜶̃

√𝒃̃′𝜴̃0𝒃̃𝜶̃′𝜴̃0𝜶̃
, 

 

where 𝜴̃0 is the identity matrix. 

 

3.2.4.3 The Correlation Between True Polygenic Scores 

 

Lastly, we note that the correlation of true polygenic scores is  

 

𝑟𝑃𝐺 =
Cov(𝒙̃𝑖𝒃̃, 𝒙̃𝑖𝒂̃)

√Var(𝒙̃𝑖𝒃̃)Var(𝒙̃𝑖𝒂̃)

 

=
𝒃̃′Var(𝒙̃𝑖)𝒂̃

√𝒃̃′Var(𝒙̃𝑖)𝒃̃𝒂̃′Var(𝒙̃𝑖)𝒂̃

 

=
𝒃̃′𝜴̃𝜶̃

√𝒃̃′𝜴̃𝒃̃𝜶̃′𝜴̃𝜶̃
, 

 

or equivalently, 

𝑟𝑃𝐺 =
𝒃̃′𝜴̃1𝜶̃

√𝒃̃′𝜴̃1𝒃̃𝜶̃′𝜴̃1𝜶̃
. 

  



 

 

 

 

3.2.4.4 The Equivalence of 𝑟, 𝑟𝐿𝐷 and 𝑟𝑃𝐺 under some Strong Assumptions 

 

Each of these measures may be thought of as members of a class of measures of genetic 

overlap: 

 

𝑟(𝑘) =
𝒃̃′𝜴̃𝑘𝜶̃

√𝒃̃′𝜴̃𝑘𝒃̃𝜶̃′𝜴̃𝑘𝜶̃
, 

 

with 𝑟𝐿𝐷 = 𝑟(0), 𝑟𝑃𝐺 = 𝑟(1), and 𝑟 = 𝑟(2).  
 

The parameter 𝑟(𝑘) may be thought of as a measure of genetic overlap because it has the 

properties that: (i) if 𝒃̃ and 𝜶̃ are independent, then 𝑟(𝑘) = 0; and (ii) if 𝒃̃ = 𝜶̃, then 𝑟(𝑘) =
1. The relative behavior of 𝑟(𝑘) for various values of 𝑘 in intermediate cases will depend on 

the degree of LD in the data and how 𝒃̃ and 𝜶̃ are related to the LD. 

 

The Equivalence of 𝑟𝐿𝐷 and 𝑟𝑃𝐺 under some Strong Assumptions 

 

Bulik-Sullivan et al.6 note that, under the assumption that the effect sizes 𝑎̃𝑗, 𝑎̃𝑙 are random, 

independent from each other for all 𝑗 ≠ 𝑙, and independent from the allele frequency and LD 

structure of their corresponding SNP, 𝑟𝐿𝐷 = 𝑟𝑃𝐺. To see this, letting 𝑗 and 𝑙 index SNPs, 

observe that 

 

E[𝒃̃′𝜴̃1𝜶̃] = E [∑𝑏̃𝑗Ω̃𝑗𝑙𝑎̃𝑙

𝑗,𝑙

] 

= ∑ E[𝑏̃𝑗𝑎̃𝑙]E[𝑥̃𝑗𝑥̃𝑙]

𝑗,𝑙

 

= ∑ E[𝑏̃𝑗𝑎̃𝑗]E[𝑥̃𝑗𝑥̃𝑗]

𝑗

 

= ∑ E[𝑏̃𝑗𝑎̃𝑗]

𝑗

 

= E[𝒃̃′𝜴̃0𝜶̃]. 
 

 

The Equivalence of all Measures of Genetic Overlap in the 𝑟(𝑘) Class (Including 𝑟, 𝑟𝐿𝐷 

and 𝑟𝑃𝐺) under some Strong Assumptions 

 

One can generalize this proof: under these same strong assumption, all measures of genetic 

overlap in the 𝑟(𝑘) class defined above are equivalent, i.e., 𝑟(𝑘) = 𝑟(𝑙) for all integers 𝑘 and 

𝑙. As a corollary, 𝑟 = 𝑟𝐿𝐷 = 𝑟𝑃𝐺 . 
 

To see this, let Ω̃𝑖𝑗
𝑘

 denote the (𝑖, 𝑗)-th element of Ω̃
𝑘
 and observe that 



 

 

E[𝑟(𝑘)] = E [
𝒃̃′𝜴̃𝑘𝜶̃

√𝒃̃′𝜴̃𝑘𝒃̃𝜶̃′𝜴̃𝑘𝜶̃
] . 

= E

[
 
 
 ∑ 𝑏̃𝑖𝑎̃𝑗𝛺̃𝑖𝑗

𝑘
𝑖𝑗

√(∑ 𝑏̃𝑖𝑏̃𝑗𝛺̃𝑖𝑗
𝑘

𝑖𝑗 )(∑ 𝑎̃𝑖𝑎̃𝑗𝛺̃𝑖𝑗
𝑘

𝑖𝑗 )
]
 
 
 

 

≈
∑ E[𝑏̃𝑖𝑎̃𝑖]𝛺̃𝑖𝑖

𝑘
𝑖

√(∑ E[𝑏̃𝑖
2]𝛺̃𝑖𝑖

𝑘
𝑖 )(∑ E[𝑎̃𝑖

2]𝛺̃𝑖𝑖
𝑘

𝑖 )

 

=
E[𝑏̃𝑖𝑎̃𝑖] ∑ 𝛺̃𝑖𝑖

𝑘
𝑖

√(E[𝑏̃𝑖
2] ∑ 𝛺̃𝑖𝑖

𝑘
𝑖 )(E[𝑎̃𝑖

2] ∑ 𝛺̃𝑖𝑖
𝑘

𝑖 )

 

=
E[𝑏̃𝑖𝑎̃𝑖] ∑ 𝛺̃𝑖𝑖

𝑘
𝑖

∑ 𝛺̃𝑖𝑖
𝑘

𝑖 √E[𝑏̃𝑖
2]E[𝑎̃𝑖

2]

 

=
E[𝑏̃𝑖𝑎̃𝑖]

√E[𝑏̃𝑖
2]E[𝑎̃𝑖

2]

, 

 

where the approximation on the third line follows from the Law of Large Numbers, from the 

fact that there are many SNPs over which the summations are taken, and from the assumption 

that the elements of 𝒃 and 𝒂 are all independent except for pairs (𝑏𝑗 , 𝑎𝑗) corresponding to the 

same SNP j; and where the equality on the fourth line follows from the assumption that the 

effect sizes are independent of the LD structure. 

 

3.2.5 Discussion 

 

It is natural to ask which of the measures discussed above is “best.” The answer depends on 

what one wishes to do. For instance, 𝑟 measures the degree to which SNPs with the largest 

GWAS estimates for one trait will also be among the largest GWAS estimates for some other 

trait. Thus, it may be most relevant for the look-up exercises we perform in Supplementary 

Information section 3.3. Note that 𝑟 will tend to be larger to the extent that the causal SNPs 

for the two traits are in LD with many of the same SNPs. 

 

The parameter 𝑟𝑃𝐺 measures the degree to which a person with a high genetic propensity for 

one trait will have a high genetic propensity for another trait. This means that it may be 

relevant for understanding how well a polygenic score (estimated in a finite sample) for one 

trait may act as a proxy for the other. As with 𝑟, LD can influence the magnitude of 𝑟𝑃𝐺. To 

the extent that the causal SNPs for the two traits are in LD with each other, the true polygenic 

scores will be correlated, which will increase 𝑟𝑃𝐺. 

 

Finally, the parameter 𝑟𝐿𝐷 measures the degree to which a SNP that has a large causal effect 

on one trait (conditioning on all other SNPs) will also have a relatively large causal effect on 

the other trait. Unlike the other two measures, 𝑟𝐿𝐷 is invariant to LD in that if two traits share 

no common causal variants, 𝑟𝐿𝐷 will be equal to zero (even if the causal variants are in strong 



 

 

LD). This is easily seen in that 𝑟𝐿𝐷 is not a function of 𝛀 or of any variables that are 

correlated with 𝛀. 

3.3 Enrichment Analysis and Look-up of Lead SNPs in GWAS for Other 

Phenotypes 

 

3.3.1 Test for Joint Enrichment of the 74 Lead SNPs for the MHBA Phenotypes 

For each of the 14 MHBA phenotypes (sources are listed in Supplementary Table 3.1), we 

compared the observed enrichment of our 74 lead SNPs to the expected degree of enrichment 

from 74 randomly chosen SNPs with similar allele frequencies.  

 

Because the GWAS results files for some of the phenotypes do not include all 74 lead SNPs, 

we began by generating a set of candidate proxies for each of the lead SNPs. We used the 

clumping procedure described in Supplementary Information section 1.6.1 to identify all 

SNPs in the lead SNP’s clump. We then retained from each clump the 25 SNPs whose LD 

with the lead SNP was greatest. This procedure yielded us a list of at most 25 candidate 

proxies for each lead SNP. 

 

The following procedure was then used to implement the test: 

 

1. For each phenotype, we generated a list of lead/proxy SNPs. If a lead SNP was 

directly available in the phenotype’s results file, it was used. If not, we replaced it 

with the highest-LD candidate proxy available in the phenotype’s results file. If none 

of the candidate proxies was available in the results file, no proxy was used for that 

lead SNP for that phenotype. Because we have 14 phenotypes and 74 lead SNPs, we 

looked up a total of 14 × 74 = 1,036 SNPs in the results files. The lead SNP itself was 

available 783 times, a proxy was available 237 times (mean r2 with lead SNP is 0.90), 

and only in 16 cases we identified neither the lead SNP nor a candidate proxy (at most 

4 cases for a given phenotype). 

 

2. For each phenotype in turn, we used the software SNPsnap21 to generate 10,000 

matched SNP vectors with allele frequency distributions similar to that of the vector 

of lead/proxy SNPs. Specifically, the SNPs in each matching vector were drawn 

randomly conditional on having a minor allele frequency that deviated from the MAF 

of the lead/proxy SNP by at most one percentage point. We dropped a small number 

of lead/proxy SNPs that were not available in the SNPsnap database (for a given 

phenotype, the number of SNPs not recognized by SNPsnap never exceeded 4).  

 

3. For each phenotype, the SNPsnap output is a matrix whose rows correspond to the 

available proxy/lead SNPs and each of whose 10,000 columns contains a vector of 

matched SNPs. We eliminated from the matrix any SNPs that were not available in 

the phenotype’s results file, iteratively replacing cells containing non-available SNPs 

with a missing value and shifting the row vector leftward to fill in missing values. 

Then, we kept only the first 500 column vectors of the matrix. By construction, this 

matrix only contained SNPs available in the phenotype’s result file.  

 

4. For each phenotype, our test statistic is the mean squared Z-statistic of the lead/proxy 

SNPs. The observed test statistic was calculated excluding SNPs for which (i) the lead 

SNP and its candidate proxies were all unavailable in the phenotype’s results file, or 



 

 

(ii) the lead/proxy SNP was not recognized by SNPsnap. To generate an empirical 

null distribution, we calculated the test statistic (the mean squared Z-statistic of the 

SNPs) in each of the 500 vectors from step (3). We then calculated the empirical P-

value as the percentile of the null distribution at which the observed test statistic falls. 

 

 

3.3.2 SNP Look-up and Proxy-Phenotype Analysis 

We have just described how the lead SNPs (or the best available proxies) were tested jointly 

for association with each of the 14 MHBA phenotypes. Here, we test the same SNPs 

individually for association with the same 14 phenotypes. 

 

For each phenotype, we looked up the P-value of each lead/proxy SNPs (whose construction 

was described in the previous subsection). The results from this analysis are shown in 

Supplementary Table 3.2. We consider two P-value thresholds. The first threshold corrects 

for both the number of lead SNPs (74) as well as the number of MHBA phenotypes (14): this 

P-value threshold is 0.05 / (74 × 14) = 4.83 × 10-5. (For simplicity, we corrected for 74 SNPs 

here and below even for phenotypes for which we tested fewer than 74 SNPs due to missing 

lead/proxy SNPs in the phenotype’s result file.) The SNPs whose P-values satisfy this stricter 

threshold are color-coded in green in Supplementary Table 3.2, so we refer to them as “green 

SNPs” in what follows. Our second threshold corrects only for the number of SNPs: 0.05 / 74 

= 6.76 × 10-4. SNPs reaching this threshold (but not the stricter threshold) are color-coded in 

yellow and referred to as “yellow SNPs.” 

 

For each yellow SNP, we investigated whether it is in a genomic region harboring SNPs 

previously reported to reach genome-wide significance in that phenotype’s GWAS. To this 

end, we identified the set of LD partners of each yellow SNP, defined as SNPs within 1000kb 

whose pairwise LD with the yellow SNP exceeds a r2 of 0.1. We estimated the pairwise r2 

using the European-ancestry 1000 Genomes Project phase 1 genotyping data22. We then 

examined whether the lead/proxy SNP or any of its LD partners reached genome-wide 

significance in the phenotype’s GWAS. If none did, we classified the SNP as “prioritized.” 

We followed the same procedure with the green SNPs. Using this procedure, we found that 

10 of the 25 SNPs labeled as either green or yellow are prioritized. Of the 15 green SNPs, we 

found that 3 are prioritized (one for hippocampus and two for height; see Supplementary 

Tables 3.2, 3.3, and 3.4). 

 

A concern about these results is that the EduYears and MHBA phenotype samples are not 

independent. Sample overlap biases the look-up exercise toward finding a significant effect 

on the MHBA phenotype because of the phenotypic correlations between each of the MHBA 

phenotypes and EduYears. To test the robustness of our findings to this concern, we ran 

restricted EduYears meta-analyses dropping overlapping cohorts. The color gray in 

Supplementary Table 3.2 flags lead SNPs that no longer reach genome-wide significance in 

the meta-analysis of EduYears after we excluded cohorts that overlap with the cohorts 

included in the phenotype’s GWAS. Of the 10 prioritized SNPs, 4 reached genome-wide 

significance even in the restricted GWAS without sample overlap (one for each of height, 

hippocampus, ICV, and schizophrenia). 

  



 

 

 

 

3.3.3 Results 

 

Extended Data Fig. 5 shows the Q-Q plots of the lead/proxy SNPs for the MHBA phenotypes 

(as defined in Supplementary Information section 3.1).  

 

The test for joint enrichment of the SNPs (Supplementary Information section 3.3.1) yields 

significant P-values at the 0.05 level for the following phenotypes: Alzheimer’s (P = 0.026), 

bipolar (P < 0.002), BMI (P = 0.004), cognitive performance (P < 0.002), height (P = 0.006), 

hippocampus (P = 0.008), intracranial volume (P = 0.006), neuroticism (P < 0.002), and 

schizophrenia (P < 0.002). We found no significant enrichment for accumbens, caudate, 

pallidum, putamen, and thalamus. Note, however, that our statistical power to detect 

associations is a function of the sample size of the MHBA phenotype meta-analyses and of 

the reliability of phenotypic measurement. Only relatively modest sample sizes were 

available for the brain anatomy phenotypes14 (N < 13,000 for subcortical regions), and 

measurement of subcortical volumes is notoriously prone to measurement error.  

  

We identified which of the significant associations with MHBA phenotypes are prioritized, as 

described in Supplementary Information section 3.3.2. One of the two SNPs that passes 

Bonferroni correction for cognitive performance in our look-up (rs9320913 on chr 6) is in 

high LD with rs1487441, which was previously reported by Rietveld et al. (2014)12 (r2 = 

0.905 according to the 1000 Genomes Pilot 1 reference panel)23, and therefore we do not 

consider it to be a prioritized association.o In addition, one EA lead SNP that passes 

Bonferroni correction for intracranial volume (rs192818565) tags the only previously 

identified locus14,24, and thus we also do not consider this finding to be a prioritized 

association. Supplementary Table 3.3 summarizes the main findings of our look-up exercise.  

 

We identify prioritized SNP associations for: Alzheimer’s disease (rs7945718), BMI 

(rs56231335), cognitive performance (rs12682297), height (rs10496091, rs113520408, 

rs9537821), hippocampus (rs4500960), intracranial volume (rs12969294), neuroticism 

(rs12969294), and schizophrenia (rs11588857). Extended Data Fig. 6 shows examples of 

regional association plots of the prioritized SNPs for cognitive performance, hippocampus, 

intracranial volume, and neuroticism. We picked these four examples because very few 

genome-wide significant SNPs have been reported for these traits until now. Regional 

association plots for the remaining prioritized SNPs are available on 

http://ssgac.org/Data.php. 

 

Several of our EA lead SNPs are related to more than one MHBA phenotype. For example, 

rs12969294 is a prioritized SNP for both intracranial volume and neuroticism, rs4500960 is 

prioritized for hippocampus volume and was previously identified as being associated with 

schizophrenia, and rs7945718 is prioritized for Alzheimer’s here and was identified earlier as 

a height SNP. 

 

                                                 
o Rietveld et al. (2014)12 reported several SNP associations with cognitive performance using a similar approach as we use 

here (with educational attainment as a “proxy phenotype”). However, they used a different set of education-associated SNPs 

(based on Rietveld et al. 201380 and a P-value threshold of 10-5 instead of the 5×10-8 threshold used here). The three SNPs 

that survived Bonferroni correction in their analysis have the following P-values in our current meta-analysis of EduYears, 

after we exclude the second-stage cohorts used in Rietveld et al. (2014): rs1487441 on chr 6 (P = 1.1×10-16), rs7923609 on 

chr 10 (P = 8.13×10-6), and rs2721173 on chr 8 (P = 3.22×10-7). 

http://ssgac.org/Data.php


 

 

Consistent with our finding sign concordance with EduYears less than 50%, we find negative 

correlation of SNP coefficients with EduYears for Alzheimer’s, BMI, and neuroticism. 

Consistent with their sign concordance greater than 50%, we find positive correlation of SNP 

coefficients for cognitive performance, intracranial volume, and height (although for height, 

the sign conconcordance is not statistically distinguishable from 50%). An intriguing pattern 

is found for schizophrenia, which has a positive but near-zero estimated genetic correlation 

(rLD = 0.08 with P = 3.2×10-4) and a nearly equal percentage of concordant SNPs and 

discordant SNPs among the set of 74 that we tested (51% concordant)—and yet, as reported 

above, the enrichment of association of these SNPs for schizophrenia is strong (P < 0.002). 

We now turn to potential explanations for this result and discuss related literature. 

 

3.3.4 Discussion 

Our work builds on earlier epidemiological research using genetically informative designs3–

5,25–29. 

 

First, our results corroborate earlier findings that the genetic contribution to the positive 

relationship between cognitive performance and EA is substantial, but not perfect1,30,31. 

 

Second, earlier studies found that neuroticism is a powerful negative predictor of 

achievement across various domains including job performance, academic achievement, and 

performance on tests of cognitive performance, partly through test anxiety32–36.  The strong 

negative genetic overlap between EA and neuroticism suggests that SNPs associated with EA 

may be good candidates for association with neuroticism. 

 

Third, our finding of a negative genetic correlation between EA and BMI corroborates earlier 

evidence from twin studies suggesting that the negative relationship between EA and BMI37–

41 is partially due to common genetic factors2,25,42. A possible hypothesis to explain this 

finding is that the genetic effects on BMI may be partially mediated by individual differences 

in self-control, impulsivity, and reward sensitivity43–48, which are also linked to learning and 

academic achievement45–48. Interestingly, the most recent GWAS on BMI found that genes 

associated with BMI are much more strongly expressed in the nervous system and sense 

organs than in the digestive system15. However, future research is needed to better understand 

the mechanisms underlying these findings.  

 

Fourth, our results also relate to a literature on the relationship between cognitive 

performance and brain size. A recent meta-analysis of published and unpublished studies on 

this topic identified 88 articles involving overall more than 8,000 individuals49. The meta-

analysis reported a significant positive association (r = 0.24) but concluded that this estimate 

is too high due to publication bias. Furthermore, twin studies have found that the association 

between brain volume and cognitive performance is partly due to common genetic effects4,26. 

Although we report results on intracranial instead of brain volumep and overlap with EA 

rather than cognitive performance, the strong positive genetic overlap of EA with both 

cognitive performance and intracranial volume corroborates the earlier twin-study findings 

that their moderate positive phenotypic association is partly due to a shared genetic 

component. 

 

                                                 
p Brain volume and intracranial volume are highly positively correlated, but in contrast to brain volume, intracranial volume 

remains roughly constant during adult life95. 



 

 

Fifth, our results relate to ongoing research on schizophrenia and bipolar disorder. Earlier 

work has demonstrated links between these mental disorders on the one hand, and school 

performance, cognitive performance, creativity, and educational attainment on the other. 

Although these latter measures are related to each other and share a genetic basis, the 

phenotypic and genetic correlations between them are far from perfect30,50,51. Furthermore, 

their relationship with schizophrenia and bipolar disorder is rather complex and possibly U-

shaped.  

 

On the one hand, low cognitive performance and low school performance have been reported 

as risk factors for schizophrenia and bipolar disorder19,52–55. For example, evidence from a 

large, population-based Swedish Multi-Generation Register suggests a weak negative 

correlation (-0.11) between IQ and psychosis (a term referring to mental disorders including 

both schizophrenia and bipolar disorder)5. Furthermore, Stefansson et al. (2013)28 

demonstrate that rare copy-number variants that are known to cause schizophrenia also 

predict lower cognitive performance in healthy individuals.  

 

On the other hand, a higher prevalence of psychosis among individuals high in cognitive 

performance and creativity has been frequently reported56–58, and polygenic risk scores for 

bipolar disorder and schizophrenia have been reported to predict creativity in independent 

samples29. This suggests that some genetic variants that increase the risk for psychosis may 

also have positive effects on cognitive performance. 

 

The relationship between educational attainment and schizophrenia specifically is similarly 

complex. Although early-onset schizophrenia is associated with school dropout59, Kremen et 

al. (2006)60 find no clear relationship between educational attainment and risk of 

schizophrenia. More generally, the relationship between education and schizophrenia appears 

to depend on age at onset, duration, and severity of the disease, factors that often are not 

measured61. The failure to account for these factors in many empirical studies may contribute 

to the relatively weak or even seemingly contradictory results.  

 

As suggested by Craddock et al. (2009)62, it is possible that the clinical diagnoses of 

schizophrenia and bipolar disorder mask several disease subtypes that are caused by different 

biological mechanisms. This is one possible interpretation of our results for schizophrenia: 

The strong enrichment for association of our EA lead SNPs with schizophrenia, combined 

with a nearly equal percentage of concordant and discordant associations of our lead SNPs 

with these mental disorders, could point to different sub-types of schizophrenia that are 

lumped together by the current disease classification system. Alternatively, it may be that 

SNPs that are associated with schizophrenia happen to be in LD with SNPs that are 

associated with educational attainment simply because both sets of SNPs are primarily 

located in genes or genomic regions that are expressed in the brain. Such co-localization 

would generate a haphazard pattern of sign concordance. Follow-up research will need to 

differentiate between these different interpretations of our results. 

 

Sixth, our results relate to ongoing research in cognitive neuroscience that aims to identify 

how specific cognitive processes are mapped to neural substrates and brain structures. 

Visuomotor abilities63, visuospatial64 and verbal-working memory65, executive functions66, 

motivation and reward processing67,68, and social skills69 have all been linked to EA. Thus, 

brain structures that influence performance of these cognitive functions could be related to 

EA. Viewed from that perspective, it might be surprising that our 95% confidence intervals 

rule out even a moderately sized genetic correlation between EA and the volumes of the six 



 

 

sub-cortical structures we tested. However, our results do not exclude the possibilities that (a) 

a significant phenotypic relationship between EA and anatomical features of these sub-

cortical regions may exist; (b) with greater statistical power, we could statistically distinguish 

from zero the magnitude of genetic correlation with these sub-cortical volumes (especially 

given the relatively low statistical power as discussed in Supplementary Information section 

3.3.3); (c) SNPs associated with EA may still be enriched for association with the sub-cortical 

volumes investigated here, as we indeed found for hippocampus; and (d) substantial genetic 

correlations may exist between EA and other brain structures that are not investigated here 

(e.g., cortical volume, fronto-parietal network, and white matter). 

 

Finally, our look-up results confirmed that EA is a useful “proxy phenotype”12 to study the 

genetic architecture of brain volume phenotypes. This is particularly noteworthy because only 

very few SNPs associated with brain volume phenotypes have been discovered. Specifically, 

the largest GWAS meta-analysis on brain volume phenotypes to date14 reports two genome-

wide significant SNPs for hippocampus and only one for intracranial volume. Our results 

prioritized additional SNPs for hippocampus (rs4500960 on chr 2, with a discordant sign of 

the effect) and intracranial volume (rs12969294 on chr 18, concordant sign). Furthermore, an 

additional EA lead SNP that passes Bonferroni correction (rs192818565) tags the only 

previously identified locus for intracranial volume14,24. 

 

For neuroticism, the largest GWAS meta-analysis to date13 reports one genome-wide-

significant SNP. Our look-up exercise prioritizes a second SNP, rs12969294 on chr 18 

(discordant sign).  

 

We find various interesting patterns that warrant future investigation. Several SNPs that are 

associated with an increased chance to obtain higher education are also associated with an 

increased likelihood of bipolar disorder or schizophrenia. For schizophrenia, several of these 

SNPs that have sign-concordant effects with EA survive Bonferroni correction (rs11588857, 

rs2245901, rs2992632, rs6739979, rs7306755), and one of them has not previously been 

identified yet as a schizophrenia variant (rs11588857). Furthermore, one of the three 

prioritized height SNPs we identify has sign-discordant effects on height and EA 

(rs113520408). 
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4 Biological Annotation 

In this section we describe, in greater detail than in the main text, the results from a number 

of analyses designed to elucidate the biological mechanisms through which DNA variation in 

our implicated genomic regions might influence educational attainment. Our treatment is 

much more extensive than in our previous reports because of the substantial increase in 

sample size, the novel bioinformatic techniques developed in the interim, and our intention to 

provide a walk-through of our methods and results that is accessible to readers who lack a 

biological background but are willing to consult appropriate resources for non-specialists 

when necessary. 

 

Each of the following subsections describes a particular method of biological analysis and the 

specific results yielded in the present application. At the outset, however, we provide some 

broad introductory material. 

 

The word gene has several distinct meanings across different subfields of genetics. 

Originally, in classical and population genetics, a gene was an indivisible token of hereditary 

material that could occupy a specific locus (discrete location in the genome). The genes at a 

particular locus might fall into distinct classes, called alleles. Adopting this terminology, we 

can say that an individual’s genome carries two genes at each locus, one inherited from each 

parent, possibly of the same allelic type (in which case the individual is said to be 

homozygous at the locus) or different allelic types (heterozygous). 

 

In most of this paper, however, we use gene in a more modern sense: a contiguous region of 

the type genome (e.g., the “human genome”), spanning many base pairs, whose expression or 

transcription leads to a particular biological product—typically a messenger RNA (mRNA) 

transcript, the translation of which leads to the production of a protein. Proteins are the basic 

structural and functional units of the cell; examples of proteins include subunits of 

neurotransmitter receptors, enzymes catalyzing metabolic processes such as the breakdown of 

neurotransmitter in the synaptic cleft, and transporters that enable a presynaptic neuron to 

reabsorb neurotransmitter that has just been released. Since locus is also used nowadays to 

designate a region encompassing many base pairs, it is preferable to adopt a different term to 

single out a point-like location in the genome. We use the term site for this purpose; the term 

variant is also often used in the literature to refer to a polymorphic site, although we avoid 

this term because it often shades into a synonym of allele. The latter term is still used in 

modern genetics to specify a distinct class of base pairs that can occupy a particular site; the 

different possible alleles at a single-nucleotide polymorphic (SNP) site are the familiar G, C, 

T, and A.   

 

Note that non-expressed portions of the genome that do not encode proteins or other products 

for use in the cell are not genes at all in the modern sense (although the base pairs inherited 

by the offspring that reside at such locations are still genes in the classical sense). If two 

regions of the genome are known to be genes because they are transcribed into mRNA at 

certain times in certain cell types, then the gene-barren region between them is often called 

“intergenic.” 

 

A nonsynonymous SNP—which necessarily lies within a gene—changes the composition and 

biological properties of the encoded protein. Such a SNP might do this if the two alleles 



 

 

specify distinct types of amino acids to be incorporated into the final protein sequence. 

Another possibility is that one allele is a stop signal leading to termination of transcription. A 

SNP or other type of polymorphic site outside of a gene can only have a phenotypic effect by 

affecting the regulation of the gene product in some manner. (The illustration that follows is 

indeed merely illustrative; many mechanisms of gene regulation are still not well 

understood.) A SNP far from a gene when the chromosome is treated as a one-dimensional 

string may actually lie in an enhancer that can be close to the transcription start site in the 

three-dimensional reality of the cell nucleus, and the specific allele present at such a SNP 

may affect the binding of the various proteins that must assemble at the start site to initiate 

the expression of the gene. Regulation refers to the modulation of gene expression’s timing, 

abundance, or cell-type specificity by such mechanisms, and it is in fact likely that most 

GWAS signals are due to sites affecting regulation as opposed to encoding differences in 

protein composition. Gene expression itself can be directly measured by assaying the 

abundance in the cell of mRNA transcripts that map to a given gene, and indeed we make use 

of several databases recording the results of such measurements in our various analyses.   

 

In the GWAS literature, the term locus has come to mean a stretch of the genome centered on 

a SNP showing the strongest evidence of association within a broader region. A locus in this 

sense is variously defined in terms of physical distance (e.g., ±250 kilobases), genetic 

distance (recombination probability), or decay of linkage disequilibrium. Two SNPs are in 

linkage disequilibrium (LD) if they are correlated—that is, if the allele present at one site 

tends to be found in the same chromosomes as a particular allele at the other. Indeed, a 

standard measure of LD between two sites, r2, is simply the squared Pearson correlation 

between counts of the respective reference alleles within phased haplotypes. 

 

This background suffices to motivate the biological questions that arise in the interpretation 

of GWAS results and the means by which these questions might be tentatively addressed. For 

starters, since a GWAS locus typically contains many other SNPs in LD with the defining 

lead SNP and with each other, it is natural to ask: which of these SNPs is the actual causal 

site responsible for the downstream phenotypic variation? Many SNPs in the genome appear 

to be biologically inert—neither encoding differences in protein composition nor affecting 

gene regulation—and a lead GWAS SNP may fall into this category and nonetheless show 

the strongest association signal as a result of statistical noise or happenstance LD with 

multiple causal sites. Fortunately, much is known from external sources of data about 

whether variation at a particular site is likely to have biological consequences, and exploiting 

these resources is our general strategy for fine-mapping loci: nominating individual sites that 

may be causally responsible for the GWAS signals. Descriptions of genomic sites or regions 

based on external sources of data are known as annotations, and readers will not go far astray 

if they interpret this term rather literally (as referring to a note of explanation or comment 

added to a text in one of the margins). If we regard the type genome as the basic text, then 

annotations are additional comments describing the structural or functional properties of 

particular sites or the regions in which they reside. For example, all nonsynonymous sites that 

influence protein structures might be annotated as such. An annotation can be far more 

specific than this; for instance, all sites that fall in a regulatory region active in the fetal liver 

might bear an annotation to this effect. 

 

A given causal site will exert its phenotypic effect through altering the composition of a gene 

product or regulating its expression. Conceptually, once a causal site has been identified or at 

least nominated, the next question to pursue is the identity of the mediating gene. In practice, 

because only a handful of genes at most will typically overlap a GWAS locus, we can make 



 

 

some progress toward answering this question without precise knowledge of the causal site. 

The difficulty of the problem, however, should still not be underestimated. It is natural to 

assume that a lead GWAS SNP lying inside the boundaries of a particular gene must reflect a 

causal mechanism involving that gene itself, but in certain cases such a conclusion would be 

premature. It is possible for a causal SNP lying inside a certain gene to exert its phenotypic 

effect by regulating the expression of a nearby gene or for several genes to intervene between 

the SNP and its regulatory target. 

 

Supplementary Table 4.1 ranks each gene overlapping a DEPICT-defined locus by the 

number of discrete evidentiary items favoring that gene (see Supplementary Information 

section 4.5 for details regarding DEPICT). These lines of evidence are taken from a number 

of our analyses to be detailed in the following subsections. Our primary tool for gene 

prioritization is DEPICT, which can be used to calculate a P-value and associated FDR for 

each gene. It is important to keep in mind, however, that a gene-level P-value returned by 

DEPICT refers to the tail probability under the null hypothesis that random sampling of loci 

can account for annotations and patterns of co-expression shared by the focal gene with genes 

in all other GWAS-identified loci. Although it is very reasonable to expect that genes 

involved in the same phenotype do indeed share annotations and patterns of co-expression, it 

may be the case that certain causal genes do not conform to this expectation and thus fail to 

yield low DEPICT P-values. This is why we do not rely on DEPICT alone but also the other 

lines of evidence described in the caption of Supplementary Table 4.1.   

 

The products of genes do not work in isolation to construct and maintain whole organisms. 

Rather, multiple gene products participate in a particular pathway that serves a distinct 

biological function. (The term pathway appears to be derived from the chains of 

causal/temporal arrows often used in illustrations of unfolding cellular processes.) If one 

considers neural signaling, it becomes clear that several gene products are needed to construct 

ion channels, reuptake transporters, neurotransmitter receptors, and so forth. On the basis of 

massive experimental evidence, biologists have constructed catalogs of pathways defined at 

different levels of organization, each containing several proteins or other gene products. We 

make heavy use of these catalogs here; in essence, we single out a pathway as likely to be 

particularly important in the biology of the phenotype if it encompasses an unusually large 

number of genes overlapping our GWAS loci. 

 

Pathways are often defined in a manner that spans different tissue or cell types. For example, 

a particular pathway may involve a ligand (signaling molecule) that is found in both the 

nervous and digestive systems. Prioritizing particular tissues is conceptually parallel to 

prioritizing pathways, and we employ similar methods for both types of biological follow-up. 

 

To summarize, our biological analyses seek provisional answers to the following questions: 

 

1. Which polymorphic sites in our GWAS loci are the actual causal sites responsible for 

downstream variation in EduYears? 

2. Which genes (protein-coding regions of the genome) mediate the effects of the causal 

sites on EduYears? 

3. Which biological pathways contribute to variation in cognitive performance and other 

psychological attributes affecting EduYears? 

4. Once certain biological mechanisms are implicated, can we determine the tissues and 

cell types where they are active? 

 



 

 

The method-specific subsections are arranged in an order that very roughly addresses these 

questions in turn. 

 

4.1 Look-up of Nonsynonymous Status, eQTL Effects, Associations with 

other Phenotypes, and Predicted Gene Functions 

 

4.1.1 Overview 

Here we conduct a number of follow-up analyses that are now routinely used to gain some 

biological insight into GWAS results. We document the sites among the lead SNPs taken 

forward from our GWAS of EduYears (or sites in strong LD with those SNPs) that fall into 

one of the following three classes: (1) nonsynonymous SNPs that alter the composition of the 

protein encoded by a gene, (2) eQTLs that are associated with the abundance of mRNA 

transcript in whole blood or in tissue from three distinct brain regions, and (3) SNPs 

associated with other phenotypes in large-scale GWAS. A notable finding is that a top 

EduYears-associated SNP is concordantly associated with head circumference in infants. As 

an additional look-up exercise, we used the Gene Network tool to ascertain the predicted 

functions of our prioritized genes and the tissues in which these genes are expressed. 

 

4.1.2 Background 

A subset of SNPs within a list of top GWAS SNPs—or, alternatively, SNPs in strong LD 

with the top SNPs—may be highlighted as promising candidates for causality if they fall 

within a class of sites that are more likely to have phenotypic effects. One such class consists 

of nonsynonymous SNPs. It is now believed that a majority of GWAS signals across all 

studied phenotypes are owed to causal sites that are regulatory rather than coding1,2, but 

nevertheless a SNP is much more likely to have some phenotypic effect if it is coding2,3. 

 

Another promising class of sites consists of expression quantitative trait loci (eQTLs), which 

in this context can be defined as SNPs that have been shown to be associated with the 

abundance of one or more mRNA transcripts. eQTLs are thus promising candidates for 

regulating the expression of their corresponding genes. A greater quantity of transcript does 

not invariably lead to greater abundance of the corresponding protein in the cell, and it is the 

latter that is of biological significance. Typically, however, the correlation between gene 

expression and protein concentration is ~0.654. 

 

If an eQTL and its regulated gene are relatively close to each other in the genome, the eQTL 

is said to act in cis (as opposed to in trans), although refinements of this terminology are also 

in use5. eQTLs are identified in studies that are analogous to GWAS, except that the 

phenotypes are gene expression (mRNA transcript levels) rather than high-level traits. The 

effect sizes of eQTLs and hence the statistical power to detect them are fairly sizable because 

of the short causal chain from variation in regulatory DNA sequence to the expression of the 

regulated gene, although it is almost certainly the case that many thousands of eQTLs remain 

to be detected5. SNPs associated with complex traits in GWAS are more likely to be eQTLs 

than other SNPs with similar minor allele frequencies that are also assayed by genotyping 

chips6. 

 



 

 

To pick out candidates for causal sites giving rise to our GWAS signals, we determined 

whether any lead EduYears-associated SNPs are in LD with nonsynonymous SNPs or eQTLs 

(or are themselves sites of these two types). 

 

We also determined whether any of our lead SNPs has emerged as a top signal in GWAS of 

other phenotypes. EduYears shows extensive genetic overlap with many other traits 

(Supplementary Information section 3), and identifying candidates for the genomic sites at 

the heads of the causal forks or chains responsible for these genetic correlations is another 

promising means of shedding light on underlying biological and behavioral mechanisms. 

 

4.1.3 Nonsynonymous Sites in Strong LD with Lead EduYears-Associated SNPs 

We used the tool HaploReg 

(http://www.broadinstitute.org/mammals/haploreg/haploreg_v3.php) to identify 

nonsynonymous SNPs in strong LD (r2 ≥ 0.6) with at least one of the 74 lead SNPs 

associated with EduYears. In total we identified 17 such SNPs, including two of our lead 

SNPs themselves (Supplementary Table 4.1.1). 

 

rs11588857 resides within LRRN2, which encodes a leucine-rich repeat found in neurons; 

proteins in this family are often involved in cell-cell adhesion. According to the Gene 

Network tool (to be described later in the subsection), LRRN2 is predicted to be active in 

several neural pathways, including SYNAPSE ORGANIZATION, POSITIVE REGULATION OF 

NERVOUS SYSTEM DEVELOPMENT, and REGULATION OF TRANSMISSION OF NERVE IMPULSE. 

 

rs35761247 resides in COL7A1, which encodes a product incorporated into collagen (the 

main structural element of connective tissues such as tendons and ligaments). This gene does 

not seem to be a promising a priori candidate for affecting EduYears, and in fact our various 

sources of evidence point to other genes in the region where this SNP is found 

(Supplementary Table 4.1). It is possible that the causal site responsible for this association 

signal is in LD with this particular nonsynonymous SNP. 

 

4.1.4 Blood cis-eQTL Look-up 

We conducted gene expression analyses of whole peripheral blood from a total of 2,360 

unrelated individuals: 1,240 individuals from the Fehrmann cohort measured with the 

Illumina HT12v3 platform7; 229 individuals from the Fehrmann cohort measured with the 

Illumina H8v2 platform7; and 891 individuals from EGCUT8. 

 

The analysis of the Fehrmann samples was confined to the SNPs shared by the Illumina 

HumanHap300, HumanHap370, and 610 Quad SNP genotyping platforms. SNPs with MAF 

< 0.05, call rate < 0.95, or HWE P-value < 0.001 were excluded from further analysis. In the 

EGCUT sample, duplicates were used to assess genotyping reproducibility. The per-

individual call rate had to be at least 0.95 for individuals to be included in subsequent 

analyses. Closely related individuals were identified using the proportion of the genome 

shared identical by descent (IBD), and the relative with the lower call rate was removed. 

SNPs with MAF < 0.01, call rate < 0.99, or HWE P-value < 1×10−5 were excluded from 

further analysis. Data were harmonized by imputation to dosages using the 1000 Genomes 

March 2012 combined reference panel. 

 

http://www.broadinstitute.org/mammals/haploreg/haploreg_v3.php


 

 

In each sample the following additional steps were taken. Gene expression data were quantile 

normalized to the median distribution and subsequently log2 transformed. Probe and 

individual means were centered to zero. (A “probe” is an element of a microarray designed to 

capture a specified mRNA transcript.) Gene expression data were then corrected for possible 

population structure by linear regression on the first four multidimensional scaling 

components derived from the genotypic data. We residualized the resulting variables on the 

projections of the individuals on the first 40 principal components (PCs) derived from the 

probe covariance matrix of the expression data that did not show evidence of association with 

any genotype meeting the P-value threshold corresponding to FDR < 0.05 (see below). Any 

expression PC showing a significant association with a SNP might represent a biologically 

meaningful effect of the SNP on the expression of multiple genes, and therefore it is 

important not to remove such PCs. 

 

cis-eQTL mapping was performed as described elsewhere9, with one difference: we deemed a 

SNP a potential cis-eQTL when the distance between the SNP and the midpoint of the probe 

was smaller than 1Mb, instead of smaller than 250kb. The precise upper bound on the 

distance between a cis-eQTL and its regulatory target is a matter of arbitrary definition at this 

point5, and we elected to relax the required proximity. 

 

We only included probes that were present on the HT12v3 platform. We only tested SNP-

probe pairs when the SNP passed quality control in at least two of the three samples. We 

tested the associations between the genotype dosages of the lead 74 SNPs from our GWAS 

meta-analysis of EduYears and the gene expression values. The three datasets, each weighted 

by sample size, were subsequently meta-analyzed. We then permuted the sample labels and 

repeated this analysis 100 times. We set the FDR to 0.05, using the permuted datasets to 

ascertain the null distribution of the nominal P-value.  

 

An apparent cis-eQTL effect may often be the result of a nearby causal SNP in high LD with 

the query SNP. In order to determine whether the lead EduYears SNPs have independent cis-

eQTL effects or are merely markers for nearby causal SNPs, we performed a conditional 

analysis. Using the procedure described above, we first determined which SNP shows the 

strongest cis-eQTL effect for each probe associated with any of the 74 lead EduYears SNPs. 

After partialing out the effect of the strongest cis-eQTL using linear regression, we repeated 

the tests of association between the EduYears SNPs and the highlighted probes. The 

significance threshold corresponding to FDR < 0.05 was again estimated with 100 

permutations. 

 

We applied the above-described methodology to our 74 top EduYears SNPs and found that 

33 SNPs were significant cis-eQTLs for 72 genes (98 array probes; the number of probes for 

mRNA transcripts can be greater than the number of corresponding genes because various 

splicing and editing mechanisms can lead a given gene to produce several distinct 

transcripts). None of our EduYears SNPs was identified as the strongest cis-eQTL for its 

probe. 14 SNPs did show an independent effect on expression after conditioning on the best 

cis-eQTL for the given probe. 

 

The effect sizes and P-values of those lead EduYears SNPs proving to be significant blood 

cis-eQTLs are presented in Supplementary Table 4.1.2. 

 



 

 

4.1.5 Brain cis-eQTL Look-up 

To determine whether any of the lead EduYears SNPs are associated with gene expression 

levels in human neural tissue, we utilized data from the Harvard Brain Tissue Research 

Center. The total sample of 742 individuals is comprised of 376 late-onset Alzheimer’s 

disease patients (LOAD), 193 Huntington’s disease patients (HD), and 173 individuals 

without a known neurological disorder (healthy). The resource contains data on expression 

levels obtained from postmortem brains and measured in three distinct regions: dorsolateral 

prefrontal cortex, visual cortex, and cerebellum. Although it is reasonable to expect that 

causal sites affecting educational attainment will enrich brain-specific cis-eQTLs, we note 

that the sample size of our blood dataset is ~3 times larger.  

 

The extensive quality control and probe-data normalization steps are described in detail 

elsewhere10. After these steps, 39,579 probes were taken forward as dependent variables for 

subsequent eQTL analysis. We eliminated SNPs exhibiting MAF < 0.01, HWE P-value < 

10−6, or call rate < 0.95. After applying these filters, 838,958 SNPs remained. For each probe 

we used a Kruskal-Wallis test to test all SNPs within 1Mb of the corresponding gene’s 

transcription start site for association with expression level. To take into account the complex 

correlation structure of this dataset, we estimated an empirical FDR: the ratio of the average 

number of eQTLs meeting a candidate threshold in datasets with randomly permuted sample 

labels to the number of eQTLs meeting that same threshold in the original dataset. Since the 

number of tests was large, the empirical null distribution converged after a relatively small 

number of permutation runs; thus, we used ten permutation runs to estimate the empirical 

FDR. We focus on the associations that survived after constraining the empirical FDR to be 

less than 0.10 (which corresponds to a nominal P-value cutoff of approximately 5×10−5). 

 

Supplementary Table 4.1.3 lists the relevant effect sizes, P-values, LD measures, and brain 

regions. In short, of our 74 lead EduYears SNPs, 15 (as represented by 28 LD proxies) were 

significant cis-eQTLs for 25 probes (which happen to represent exactly 25 genes). We 

observed eQTLs (counting lead EduYears SNPs and not proxies) active in all three brain 

areas: 13 in dorsolateral prefrontal cortex, 11 in visual cortex, and 12 in cerebellum. Most of 

the apparent effects were observed in all samples, except rs12987662 (its proxy rs6722241 

significant in LOAD only), rs572016 (its proxy rs3213566 significant in LOAD only), and 

rs1043209 (its proxy rs11157390 significant in HD only). Since these inconsistencies may be 

due to inadequate statistical power, we did not use them as a basis for deprioritization. 

 

4.1.6 GWAS Look-up 

Consulting the NHGRI GWAS catalog (http://www.genome.gov/gwastudies), we extracted 

previously reported significant GWAS signals within a 500kb radius of any lead EduYears-

associated SNP and also in LD with this focal SNP to the extent r2 ≥ 0.6 (1000 Genomes 

CEU). We excluded traits studied in our proxy-phenotype analysis (Supplementary 

Information section 3). To be clear, we are looking here for EduYears SNPs or LD partners of 

such SNPs reaching genome-wide significance in a GWAS of any trait. 

 

We found that 6 of our 74 lead EduYears SNPs are (in close proximity to) signals reaching 

the significance threshold P < 5×10−8 in other published GWAS. Supplementary Table 4.1.4 

lists the results. Perhaps the most interesting overlap occurs at rs7306755, which is in strong 

LD (r2 = 0.99) with a SNP associated with head circumference in infants. Looking up the 

proxy SNP in our meta-analysis results, we found that the effect signs are concordant; the 

allele associated with increased EduYears is also associated with increased head 

http://www.genome.gov/gwastudies


 

 

circumference. In our proxy-phenotype analysis, the lead SNP is also concordantly associated 

with intracranial volume in adults, although not significantly so (P = 0.33). 

 

In contrast to infant head circumference and those traits studied in our proxy-phenotype 

analysis, the cancers and autoimmune disorders in Supplementary Table 4.1.4 for the most 

part offer little a priori reason to invoke a connection with cognition or personality. Results 

such as these, obtained from GWAS of apparently unrelated phenotypes, may contribute to 

the debate over the extent and evolutionary importance of pleiotropy11. One possibility is that 

a relatively small fraction of polymorphic sites are functional, implying that many sites are 

necessarily pleiotropic if polygenicity is the rule, but that effects on two traits are often 

discordant and thus do not necessarily lead to a sizable genetic correlation. Any inferences 

from such results, however, must be tentative in the absence of knowledge regarding the 

precise causal sites responsible for these GWAS signals. For instance, a SNP with apparent 

effects on two distinct traits may be tagging a causal site affecting one trait and an entirely 

different causal site affecting the other trait. However, even if the most that can be said at 

present is that functional SNPs tend to reside in the same genomic regions, the findings are 

still relevant to the discussion of pleiotropy, which becomes the limit of a more general 

investigation into the effects of linkage and LD on natural selection and neutral variation12. 

 

4.1.7 Using Co-Expression to Predict Gene Function 

We used a recently developed method (implemented by Fehrmann et al.13 and more 

extensively described in Supplementary Information section 4.5) to gain insight into the 

functions of the genes prioritized by DEPICT, our chief tool for gene nomination. We queried 

the co-expression database described by ref. 13 

(http://www.genenetworki.nl:8080/GeneNetwork/mgi.html) with each of our DEPICT-

prioritized genes (Supplementary Table 4.1). After using the symbol of the focal gene as the 

search term, we recorded all results listed under Gene Ontology (GO)14 biological process, 

cellular compartment, and molecular function that were indicated to be statistically 

significant. We also recorded the analogous results that were listed under the Reactome15 and 

Kyoto Encyclopedia of Genes and Genomes (KEGG)16 pathways. We then recorded all 

tissues, organs, and cell types (“tissues”) where the area under the receiver operating 

characteristic curve (AUC) with respect to the discriminating power of measured gene 

expression exceeds 0.80. The AUC in each case was derived from the difference between the 

samples of the focal tissue and all other tissues in the distribution of the query gene’s 

expression level, as determined by text-mining the descriptions provided by experimenters 

who uploaded expression data to the Gene Expression Omnibus (GEO). Note that the 

tissue/cell type labels taken from the Medical Subject Headings (MeSH) database can refer to 

different levels of a hierarchy and therefore are not mutually exclusive in application. 

 

We hasten to add that this look-up exercise cannot produce results as comprehensive as those 

of DEPICT when this latter tool is used to highlight biological pathways and tissues 

(Supplementary Tables 4.5.1 and 4.5.2). The advantage of the Gene Network look-up is ease 

of use and the provision of some intuition regarding the output of the more sophisticated 

DEPICT procedures described in Supplementary Information section 4.5. 

 

The results of the look-up exercise can be found in Supplementary Table 4.1.5, which lists 

the 10 most frequently occurring search results yielded by each data source and their 

respective counts. It is immediately apparent that the table is dominated by terms related to 

the brain. Many of the terms concern transmission of signals across the synapse, the junction 

http://www.genenetworki.nl:8080/GeneNetwork/mgi.html


 

 

between two neurons typically consisting of the axon terminal, a dendritic spine, and the 

extracellular cleft between terminal and spine. (An axon is the output cable of a neuron; a 

dendrite is a short protrusion extending from a neuron, along which messages from other 

neurons are conveyed to the cell body.) Glutamate is the excitatory neurotransmitter most 

commonly used to relay messages across the synapse, and many of the synaptic terms single 

out this ligand in particular (e.g., GLUTAMATE RECEPTOR ACTIVITY). These results recapitulate 

the findings from our earlier study of cognitive performance17. There are a number of terms 

concerning neural development, including NEURON CELL-CELL ADHESION, TELENCEPHALON 

DEVELOPMENT, AXON GUIDANCE, and NOTCH SIGNALING PATHWAY. Another noteworthy trend 

is the presence of many terms related to chromatin modification (e.g., CHROMATIN 

REMODELING COMPLEX). Although tissue-specific gene expression per se is not employed by 

DEPICT to prioritize genes, the most frequently returned tissues where DEPICT-prioritized 

genes are more highly expressed than in other tissues are all neural. The three most frequent 

terms are PREFRONTAL CORTEX, FRONTAL LOBE, and HIPPOCAMPUS. 
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4.2 Enrichment Analysis and Fine-Mapping of GWAS Signals with fgwas 

4.2.1 Overview 

We briefly describe the intuition behind fgwas, a method for using GWAS results and 

functional-genomic data to (1) identify the types of polymorphic sites in the genome that are 

most likely to influence a trait and (2) use this information to fine-map GWAS loci and 

identify additional loci. We then describe an application of this method to our GWAS of 

EduYears. The annotations that most improve the probability of an association between a 

genomic region and EduYears are those that indicate gene regulatory regions in the fetal 

brain. This pattern of enrichment has not previously been observed in applications of fgwas 

to 18 other phenotypes. Furthermore, on the assumption that a single causal SNP is 

responsible for a given association signal, we use the functional enrichments to identify 17 

SNPs with a strong probability of causality. 

 

4.2.2 Background 

A GWAS can be used to assess, for millions of polymorphic sites in the genome, the 

evidence that the genotype at the site is associated with the phenotype. In general, when 

deciding if the evidence for association meets some threshold of statistical significance, each 

site is treated in the same way—that is, we set some threshold (typically, P < 5×10−8) and 

consider all sites passing this threshold to be significant.  

 



 

 

However, a priori we know that some SNPs are more likely to be associated with the 

phenotype than others; for example, it is often assumed that nonsynonymous SNPs are more 

likely to influence phenotypes than sites that fall far from all known genes. So a P-value of 

5×10−7, say, though not typically considered significant at the genome-wide level, might 

merit a second look if the SNP in question is nonsynonymous.  

 

Formalizing this intuition can be done with Bayesian statistics, which combines the strength 

of evidence in favor of a hypothesis (in our case, that a genomic site is associated with a 

phenotype) with the prior probability of the hypothesis. Deciding how to set this prior is often 

subjective. However, if many hypotheses are being tested (for example, if there are thousands 

of nonsynonymous polymorphisms in the genome), then the prior can be estimated from the 

data themselves using what is called “empirical Bayes” methodology. For example, if it turns 

out that SNPs with low P-values tend to be nonsynonymous sites rather than other types of 

sites, then the prior probability of true association is increased at all nonsynonymous sites. In 

this way a nonsynonymous site that otherwise falls short of the conventional significance 

threshold can become prioritized once the empirically estimated prior probability of 

association is taken into account. Note that such favorable reweighting of sites within a 

particular class is not set a priori, but is learned from the GWAS results themselves.  

 

In our case, we split the genome into approximately independent blocks and estimate the 

prior probability that each block contains a causal SNP that influences the phenotype and 

(within each block) the conditional prior probability that each individual SNP is the causal 

one. Each such probability is allowed to depend on annotations describing structural or 

functional properties of the genomic region or the SNPs within it. We can then empirically 

estimate to extent to each annotation predicts association with the focal phenotype. For a 

complete description of the fgwas method, see ref. 1.  

 

4.2.3 Methods 

For application to the GWAS of EduYears, we used the same set of 450 annotations as ref. 1; 

these are available at https://github.com/joepickrell/1000-genomes. The annotations include 

elements of gene structure (e.g., nonsynonymous sites, untranslated regions following stop 

signals), several hundred genomic regions identified as DNase hypersensitive in a variety of 

tissues and cell lines2,3, and segmentations of the genome in the six ENCODE cell lines4. A 

segmentation in this sense is a partition of the genome that uses a hidden Markov model or 

similar mathematical construct to assign a somewhat high-level “state” to each segment of 

the partition. The states are inferred from the correlation structure of low-level features such 

as histone marks and transcription factors. The states in the segmentations based on the 

ENCODE data were learned in an unsupervised fashion—meaning that the methods were not 

initially trained on portions of the genome already labeled with a priori state-like 

annotations—but can be interpreted post hoc as regions of the genome that (in a given cell 

type) are: 

 

1. targets of the transcription-regulating protein CTCF; 

2. enhancers (regions that bind transcription factors); 

3. promoter flankers (regions near the transcription start sites of actively expressed 

genes); 

4. repressed chromatin (regions where transcription factors are prevented from binding);  

5. transcribed regions, including exons and introns; 

6. active transcription start sites; and  

https://github.com/joepickrell/1000-genomes


 

 

7. weak enhancers. 

 

The segmentations were performed on each cell line independently, but the outputs are 

somewhat similar due to the biology shared across different tissues. 

 

Since DNase I hypersensitive regions will feature prominently in our results, it is worthwhile 

to describe them here. (In the literature these are commonly referred to as DNase I 

hypersensitive “sites.” In keeping with our reservation of this term for atomic positions in the 

genome, however, we will use the alternative “regions.”) At any given time, in any given cell, 

much of the DNA making up the genome is tightly wound around spool-like proteins known 

as histones; collectively, the DNA, histones, and other proteins and RNA packaged together 

in this way are called chromatin. In those parts of the genome known as DNase I 

hypersensitive regions, the DNA is readily degraded by the enzyme DNase I. A finding of 

DNase I hypersensitivity is often taken as evidence of regulatory mechanisms having 

unpacked the chromatin and thereby exposed the constituent DNA to transcription factors and 

other proteins involved in gene expression. Whether a specific genomic region is DNase I 

hypersensitive depends on the cellular and temporal context, as regulatory mechanisms target 

a level of gene expression appropriate to the cell type and developmental stage. 

 

We labeled each of the ~9 million SNPs in our GWAS of EduYears with any of the 450 

annotations for which it qualified; note that several of these annotations refer to independent 

replicates of the same experiments. We then ran fgwas as described in ref. 1 with two 

exceptions. First, instead of splitting the genome into blocks containing equal numbers of 

SNPs, we split it into approximately independent blocks identified from patterns of linkage 

disequilibrium in the 1000 Genomes Project European-ancestry populations (using the –bed 

flag)5. Second, we needed to set a prior variance of effect size to calculate the Bayes factor 

measuring the evidence in favor of association and previously had used a fixed value of 0.1. 

Here, we averaged over three Bayes factors calculated with prior variances equaling 0.01, 

0.1, and 0.5.  

 

4.2.4 Single-Annotation Models 

Shown in Extended Data Fig. 7a are the top 50 annotations when considering each 

individually, ordered so that the annotations that most improve the likelihood of the model 

are at the top. The individual annotation that most improves the model likelihood is DNASE 

(FETAL BRAIN) (4.69-fold increase in odds of association; 95% confidence interval 2.89–

7.07). Several independent replicates of the experiments assaying DNase I hypersensitivity in 

the fetal brain are also referred to by the top annotations. (We have no adult brain tissues in 

this database. Each of the experiments assaying DNase I hypersensitive regions in the fetal 

brain was performed independently.) Furthermore, in line with 18 other phenotypes 

previously analyzed with fgwas, transcriptionally repressed chromatin is significantly 

depleted of SNPs associated with EduYears. Note that in the analyses applying these exact 

same annotations to the GWAS of the 18 other traits, we did not see any trait enriched by 

SNPs residing in genomic regions that are DNase I hypersensitive in the brain. 

 

4.2.5 Combined Model 

Many sites in the genome satisfy criteria for multiple annotations, and it is of interest to 

determine the independent contribution of each annotation in a manner analogous to multiple 

regression. Using forward selection and cross-validation to avoid overfitting1, we built a 



 

 

combined model including the effects of multiple annotations. Extended Data Fig. 7b 

displays the results of the combined model that maximizes the cross-validation likelihood. In 

the combined model are annotations referring to transcription in HepG2 (a cell line derived 

from the liver of a patient with hepatocellular carinoma) and HeLa (a cell line derived from a 

cancerous cervix). Crucially, the model-selection procedure retained two different 

annotations referring to DNase I hypersensitive regions identified in the fetal brain. 

 

4.2.6 Reweighted GWAS and Fine Mapping  

We reweighted the GWAS results using the functional-genomic results described above. 

Using a regional posterior probability of association (PPA) greater than 0.90 as the cutoff, we 

identified 102 regions likely to harbor a causal SNP with respect to EduYears (Extended Data 

Fig. 7c and Supplementary Table 4.2.1). All but two of our 74 lead EduYears-associated 

SNPs fall within one of these 102 regions. The exceptions are rs3101246 and rs2837992, 

which attained PPA > 0.80 (Extended Data Fig. 7c). In previous applications of fgwas, the 

majority of novel loci that attained the equivalent of genome-wide significance only upon 

reweighting later attained the conventional P < 5×10−8 in larger cohorts1. 

 

Within each region attaining PPA > 0.90, each SNP received a conditional posterior 

probability of being the causal SNP (under the assumption that there is just one causal SNP in 

the region). The method of assigning this latter posterior probability is similar to that of ref. 

6, except that the input Bayes factors are reweighted by annotation-dependent and hence 

SNP-varying prior probabilities. In essence, the likelihood of causality at an individual SNP 

derives from its Bayes factor with respect to phenotypic association (which is monotonically 

related to the P-value under reasonable assumptions), whereas the prior probability is derived 

from any empirical genome-wide tendency for the annotations borne by the SNP to predict 

evidence of association. Thus, the SNP with the largest posterior probabilities of causality 

tend to exhibit among the strongest P-values within their loci and functional annotations that 

predict association throughout the genome. Note that proper calibration of this posterior 

probability requires that all potential causal sites have been either genotyped or imputed, 

which may not be the case in our application; we did not include difficult-to-impute non-SNP 

sites such as insertions/deletions in the GWAS meta-analysis. With this caveat in mind, we 

identified 17 regions where fine mapping amassed over 50 percent of the posterior 

probability on a single SNP (Supplementary Table 4.2.2). Of our 74 lead EduYears SNPs, 9 

are good candidates for being the causal sites driving their association signals. One of our top 

SNPs, rs4500960, is in nearly perfect LD with the causal candidate rs2268894 (and is indeed 

the second most likely causal SNP in this region according to fgwas). The causal candidate 

rs6882046 is within 75kb of two lead SNPs on chromosome 5 (rs324886 and rs10061788), 

but no two of these three SNPs show strong LD. Interestingly, the remaining 6 causal 

candidates lie in genomic regions that only attain the equivalent of genome-wide significance 

upon Bayesian reweighting. Of the 17 causal candidates, 9 lie in regions that are DNase I 

hypersensitive in the fetal brain. 

 

4.2.7 Conditional Analysis of Correlated Annotations 

In 4.2.5, we reported an analysis that controls for correlations across a number of different 

annotations. Specifically, we used forward selection and cross-validation to select multiple 

annotations to be included in a combined model. The results, displayed in Extended Data Fig. 

7b, are consistent with our conclusion that the annotation DNASE (FETAL BRAIN) is an 



 

 

important predictor of whether a SNP is significantly associated with EduYears in our meta-

analysis. 

 

Here, we report an additional analysis to probe the robustness of our conclusions. The goal of 

this analysis is to test to what extent each annotation included in our combined model is 

robust to controlling for other annotations, including other annotations that may be correlated 

with it. 

 

Following ref. 1, for each annotation included in the combined model in Extended Data Fig. 

7b (hereafter, called the “annotation of interest”), we tested whether adding that annotation to 

a model that controls for another annotation (hereafter, called the “other annotation”) 

significantly improves the fit of the model. Specifically, for each annotation of interest, we (i) 

estimated a model replacing the annotation of interest with the other annotation; (ii) fixing the 

coefficient of the other annotation, we added the annotation of interest back to the model and 

estimated its coefficient; and (iii) we examined whether the improvement in the model’s 

likelihood was statistically significant (i.e., P < 0.05). For every annotation of interest, we 

repeated this procedure using as the other annotation each of the (other) 50 most significant 

annotations from the one-annotation-only analysis that were not included in the combined 

model. By examining which other annotations eliminate the statistical significance of the 

annotation of interest, we can assess whether particular confounds might be driving the 

presence of DNASE (FETAL BRAIN) in the combined model. 

 

The results of this robustness check are shown in Supplementary Table 4.2.3. In summarizing 

these results, we concentrate on the two instances (i.e., experimental replicates) of DNASE 

(FETAL BRAIN) as the annotations of interest, since their importance is the primary result of 

this analysis. 

 

Here we list the “other annotations” that eliminate the statistical significance of DNASE 

(FETAL BRAIN). To be more precise, the “other annotations” such that adding one of the 

instances of the DNASE (FETAL BRAIN) did not generate a significant improvement in model fit 

(P > 0.05) were: 

 

 Another instance of DNASE (FETAL BRAIN). This finding is unsurprising since different 

instances of DNASE (FETAL BRAIN) are highly correlated with each other. It also does 

not bear on the question of whether DNase I hypersensitivity in the fetal brain is 

confounded by a different genomic feature. 

 One of the several annotations related to transcription in embryonic stem cells. In this 

case, DNASE (FETAL BRAIN) only barely becomes insignificant (P < 0.06), so it does 

not appear that these annotations drive our finding about DNASE (FETAL BRAIN). 

 One experimental replicate of DNASE (FETAL MUSCLE). In this case also, DNASE 

(FETAL BRAIN) only barely becomes insignificant (P = 0.07). We conclude that DNASE 

(FETAL MUSCLE) does not seem to drive our finding about DNASE (FETAL BRAIN). 

 Experimental replicates of DNASE (FETAL LUNG). In these cases, the P-value of DNASE 

(FETAL BRAIN) gets as large as 0.13.  Thus, from a statistical perspective, DNASE 

(FETAL LUNG) is the strongest candidate for a confounder, although it is not obvious to 

us how to interpret it biologically. In any case the lung is a rather heterogeneous tissue 

where DNase I hypersensitivity has previously been found to predict association with 

height1, another perhaps unlikely phenotype. 



 

 

 One of several annotations related to DNase I hypersensitivity in neural progenitor 

cells. These annotations implicate early brain development just as DNASE (FETAL 

BRAIN) does. Therefore, while this finding raises the question of which of these 

correlated annotations is responsible for the signal we observe, it does not call into 

question the substantive conclusion from this analysis that early brain development is 

implicated. 

 

We interpret these results taken altogether as broadly supporting the robustness of our 

conclusion: DNase I hypersensitivity in the fetal brain (or in progenitors of brain cells) is an 

important predictor of whether a SNP is associated with EduYears, although it is conceivable 

that the finding is instead driven by DNASE (FETAL LUNG).  

 

4.2.8 Analysis of the Roadmap Epigenomics data 

To confirm the enrichment of regions annotated as related to gene regulation in the brain, we 

turned to a separate set of annotations based on data from the Roadmap Epigenomics 

Consortium7. 

 

The annotations are based on genome segmentations in 127 cell lines/types from 

https://sites.google.com/site/anshulkundaje/projects/epigenomeroadmap. In these 

segmentations, each region of the genome in each cell line/type falls into one of 15 categories 

according to the pattern of histone marks in the region. We labeled each SNP in the 1000 

Genomes Project with any of the 1,905 annotations, defined by cell lines/types and pattern of 

histone marks, for which it qualified. We additionally included SYNONYMOUS and 

NONSYNONYMOUS as annotations. (Synonymous SNPs are single-nucleotide polymorphic sites 

within protein-coding genes that do not affect the composition of the protein as a result of 

redundancy in the mapping of DNA triplets to amino acids.) This dataset lacks an annotation 

referring directly to a positive result from an experimental assay of DNase I hypersensitivity 

in the brain. It does contain excellent proxies for this annotation such as the brain-specific 

extent of transcription and whether a region is a brain-specific enhancer; a frequent cause of 

DNase I hypersensitivity is the regulatory exposure of transcription start sites and enhancers 

to the machinery of gene expression. We then performed the same analyses as in our 

treatment of the earlier dataset, except using this set of 1,907 annotations instead of the 

previous set of 450.  

 

All 530 statistically significant (P < 0.05) annotations are given in Supplemental Table 4.2.4. 

Again, the most significant annotations refer to cell lines/types that are neural in nature. In 

particular, the four most significant annotations that improve the odds of association with 

EduYears are WEAK TRANSCRIPTION (FETAL BRAIN FEMALE) (6.27-fold increase in odds of 

association; 95% confidence interval 3.43–11.25), WEAK TRANSCRIPTION (FETAL BRAIN MALE) 

(6.05-fold increase in odds of association; 95% confidence interval 3.35–10.75), ENHANCERS 

(FETAL BRAIN MALE) (10.74-fold increase in odds of association; 95% confidence interval 

5.49–19.22), and WEAK TRANSCRIPTION (BRAIN DORSOLATERAL PREFRONTAL CORTEX) (4.67-

fold increase in odds of association; 95% confidence interval 2.67–8.02). We also replicated 

the observation that genomic regions annotated as transcriptionally repressed 

(QUIESCENT/LOW) are depleted of SNPs associated with EduYears.  
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4.3 Functional Partition of Heritability with GREML 

 

4.3.1 Overview 

By applying genetic-relatedness-matrix REML to pooled data from the Health and 

Retirement Study, the Rotterdam Study, and the Swedish Twin Registry, we partitioned the 

SNP-based heritability of EduYears between (1) coding and non-coding regions of the 

genome and (2) regions of the genome that are DNase I hypersensitive regions in different 

cell types. Partitioned heritability estimates indicated that EduYears-associated SNPs enrich 

nonsynonymous sites and regions that are DNase I hypersensitive in both blood cells and the 

brain. Only the enrichment of regions that are DNase I hypersensitive in blood, however, was 

statistically significant. A likely explanation for the typical failure of enrichment to reach 

significance is that available SNPs in our analysis poorly represent nonsynonymous sites and 

DNase I hypersensitive regions and thus lead to biased heritability estimates. 

 

4.3.2 Background 

Explanations of genomic-relatedness-matrix restricted maximum likelihood (GREML), at 

various levels of formality, have been given in previous publications1–4. We followed the 

method developed by ref. 5 and estimated the extent to which the heritable variance of 

EduYears enriches coding SNPs and also SNPs residing in regions that are DNase I 

hypersensitive in particular cell types. Partitioning heritability in this way can help to 

elucidate the biological mechanisms through which genetic variation affects the phenotype of 

interest. 
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4.3.3 Data and Methods 

The investigators of the Rotterdam Study (RS) I and II genotyped their samples with the 

Illumina-550K chip; RS III, the Illumina-610K-Quad; the Swedish Twin Registry (STR), the 

HumanOmniExpress-12v1-A; and the Health and Retirement Study (HRS), the Illumina-

Omni2.5-Beadchip. In all cohorts, the worldwide 1000 Genomes (1000G) phase I reference 

sample was used for imputation. 

 

From the 1000G SNPs we selected the subset of available autosomal HapMap3 SNPs with an 

imputation r² above 70%. We rounded the dosages to best-guess genotypes. In each cohort 

we performed quality control (QC) on the best-guess genotypes, excluding all SNPs meeting 

any of the following criteria: MAF < 0.01, Hardy-Weinberg equilibrium P < 0.01, and 

missingness greater than 0.05. We also excluded individuals missing more than 5 percent of 

their calls. After QC we merged the five cohorts. This procedure yielded a merged dataset 

consisting of 1,062,589 SNPs available in all cohorts. The total number of individuals in the 

merged set was 29,765. 

 

In each cohort we corrected EduYears for age, squared age, and gender. The resulting 

residuals were standardized within cohort. In the merged dataset we selected individuals with 

non-missing measurements of the control and outcome variables. In addition, from each 

twinship in the pooled data, we selected at most one twin. The sample size remaining after 

these steps was 26,180. 

 

We applied a second round of QC to the merged data, with the same thresholds applied at the 

cohort level. This led to 1,052,745 SNPs. To this final set of markers and individuals, we 

applied GCTA to construct the genetic-relatedness-matrix (GRM) and calculate its 

eigendecomposition. From this decomposition we retained the first 20 principal components. 

Finally, we included cohort dummies as additional controls. Pairs of individuals with a 

genetic relatedness greater than 0.025 were excluded. This relatedness cutoff led to a final 

sample of 20,450 individuals. 

 

In the taxonomy of ref. 5, SNPs are assigned to six different categories (i.e., nonsynonymous, 

UTR, promoter, DNase I hypersensitive regions, intronic, and intergenic). We adopted the 

data sources of ref. 5 but for simplicity collapsed all SNPs in the five noncoding categories. 

This classification yielded 16,565 coding and 1,036,180 noncoding SNPs. For each of the 

two categories, we constructed a GRM. In essence, we modeled the matrix of phenotypic 

products as a linear combination of GRMs. The variance component weighting each GRM 

corresponds to the SNP-based additive genetic variance attributable to the particular class of 

SNPs (e.g., coding). 

 

We carried out another partitioning analysis by constructing three (partially overlapping) 

subsets, containing SNPs located in regions that are DNase I hypersensitive in blood cells, 

brain cells, and other cell types respectively. For each subset we constructed a GRM based on 

the SNPs in the subset, a GRM based on SNPs located in regions that are DNase I 

hypersensitive region in some cells but not in the cell type under consideration, and a GRM 

based on SNPs outside any region ever observed to be DNase I hypersensitive. We 

subsequently used GREML with three variance components to estimate the respective 

contributions to heritability made by three types of SNPs. 

 

We note that the GREML procedure we employ can produce biased estimates if the SNPs 

with nonzero partial regression coefficients are not representative of the entire category with 



 

 

respect to LD, but the magnitude of any such bias is likely to be small and in any case lead to 

underestimates of univariate quantities4,6. Bivariate quantities are not likely to be affected. 

 

4.3.4 Partitioned Heritability Results 

Supplementary Table 4.3.1 shows the results of our GREML partitions. Turning first to the 

partition between coding and non-coding SNPs, one can see that noncoding SNPs explain the 

bulk of the genetic variation. This is not surprising since coding SNPs are outnumbered by a 

factor of ~60. The enrichment statistic—defined as the proportion of heritability captured by 

a set of SNPs divided by the proportion of SNPs in that set—suggests that coding SNPs are 

enriched by ~3-fold; however, using a likelihood-ratio test, we found that this statistic is not 

significantly greater than one. 

 

Similarly, in our partitions between SNPs in regions that are DNase I hypersensitive in a 

particular cell type and other SNPs, there appears to be enrichment of regions that are DNase 

I hypersensitive regions in blood and the brain, but only the ~2-fold enrichment of blood is 

statistically significant. 

 

The lack of statistical significance is likely to be driven by the poor representation of causal 

SNPs in enriched regions by our subset of HapMap3 SNPs. In more detail, we must consider 

that the SNP-based heritability captured by genotyping chips is already near the asymptote 

once the number of SNPs is about 400K1,7, which is a small subset of the roughly 8 million 

SNPs in European populations where both alleles are common. Therefore, when attempting 

to partition a fixed SNP-based heritability with a reduced subset of all common SNPs, the 

true heritability contributed by a SNP that bears a particular annotation but is missing from 

the panel must be captured by other SNPs in LD, and these proxy SNPs will often fall in 

other functional categories; this will tend to reduce the estimated heritability accounted for by 

SNPs in enriched regions (and to increase the estimated heritability accounted for by SNPs in 

impoverished regions). For instance, the very numerous classes of SNPs that are not DNase I 

hypersensitive in the brain will appear to capture more of the fixed SNP-based heritability 

than these classes actually contribute, because many of their SNPs tag DNase I hypersensitive 

regions that are not well represented in the panel. Ref. 5 noted that DNase I hypersensitive 

regions are especially prone to a misallocation of their SNP-based heritability to other regions 

when panels of SNPs smaller than 1000G are used. 

 

Rather than attempting to remedy this limitation, we turned to stratified LD Score regression, 

a novel method for partitioning heritability that is not constrained in this manner. Stratified 

LD Score regression is the subject of the next subsection. 
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4.4 Functional Partition of Heritability Using Stratified LD Score 

Regression 

 

4.4.1 Overview 

By performing multiple regression of GWAS association chi-square statistics on stratified LD 

Scores, each corresponding to how well the focal SNP tags other SNPs within a functional 

category (e.g., nonsynonymous, DNase I hypersensitive region), we can estimate the 

percentage of the trait’s total SNP-based heritability ascribable to SNPs residing in each 

category. Application of this method to our GWAS of EduYears leads to results that in some 

ways are similar to those obtained from analyses of other phenotypes; for instance, we find 

that regions of the genome that are evolutionarily conserved in mammals account for a 

disproportionate share of heritable variance, whereas regions that are transcriptionally 

repressed are depleted of contributions to heritability. In line with some other previously 

analyzed phenotypes but not others, EduYears owes an enriched share of its heritability to 

regions associated with histones that are marked specifically in cell types constituting the 

central nervous system. 

 

4.4.2 Background  

Stratified LD Score regression is based on the relationship 

 

𝑬[𝝌𝒋
𝟐] = 𝑵∑𝝉𝒄𝓵(𝒋, 𝒄) + 𝑵𝒂 + 𝟏,

𝑪

𝒄

 

 

where 𝜒𝑗
2 = 𝑁𝛽̂𝑗

2 is the GWAS chi-square statistic for SNP j, N is the sample size, c indexes 

the functional categories (which do not have to be disjoint), ℓ(𝑗, 𝑐) is the stratified LD Score 

of SNP j with respect to functional category 𝑐, 𝜏𝑐 is the average contribution to heritability of 

a SNP due to its membership in category 𝑐, and a is a term that measures the contribution of 

confounding biases such as cryptic relatedness and population stratification. A derivation of 

this equation is given by ref. 1. To be clear, 

 



 

 

𝓵(𝒋, 𝒄) ≔  ∑ 𝒓𝒋𝒌
𝟐

𝒌∈ 𝓒𝒄

 , 

 

where 𝒞𝑐 denotes the set of SNPs in the cth functional category (c = 1, …, C). Thus, the 

stratified LD Score of SNP j with respect to category 𝑐 is the sum of j’s linkage 

disequilibrium (LD) measures with respect to all SNPs in category 𝑐. In the case that the 

functional categories are disjoint, the sum of SNP j’s stratified LD Scores is equal to its total 

LD Score (Supplementary Information section 2.3). In stratified LD Score regression, 

however, the categories need not be disjoint. The case of SNPs belonging to more than one 

category is analogous to multiple regression with correlated predictor variables; Crow and 

Kimura2 give an insightful description of the correlation between two variables in terms of 

discrete “elements” shared in common between them. 

 

To estimate the heritability ascribable to various functional categories, the multiple regression 

of 𝜒𝑗
2 on the ℓ(𝑗, 𝑐)’s implied by the above relationship is used to estimate the 𝜏𝑐’s; the 

squared coefficient of SNP j in the regression of the phenotype on the SNP is assumed to 

equal, on average,  Var(𝛽𝑗) = ∑ 𝜏𝑐𝑐:𝑗∈𝒞𝑐
 (i.e., it is assumed that the SNPs bearing the same 

functional annotations as SNP j have an average squared regression coefficient equal to the 

sum of the 𝜏𝑐’s over the categories to which these SNPs belong); and the heritability 

ascribable to functional category 𝑐 is calculated as 

 

ℎ2(𝒞𝑐) = ∑ Var(𝛽𝑗)

𝑗∈𝒞𝑐

. 

 

Enrichment is then calculated for each category as the fraction of the total heritability 

captured by the category divided by the fraction of SNPs in that category. The simulations 

reported in ref. 1 indicate that this method of assigning heritability to functional categories is 

superior to GREML because it renders a large number of categories computationally 

tractable. Another advantage is that can be applied to meta-analysis summary statistics 

without requiring individual-level data. 

 

Note that, as ref. 1 mentions, this method of partitioning heritability works even when 

Genomic Control (GC) has been applied to the summary statistics of some cohorts in the 

meta-analysis, even though the GC correction makes it impossible to estimate the heritability 

for any specific category or the total heritability. As ref. 1 puts it, “[t]his is because GC 

correction introduces a multiplicative error into estimates of both ℎ2(𝒞𝑐) and ℎ2, but the two 

multiplicative errors are equal, and cancel out in the ratio.” 

 

To partition the SNP-based heritability of EduYears with our GWAS meta-analysis results, 

we followed exactly the same procedure described in ref. 1. We used the stratified LD Scores 

calculated from the European-ancestry samples in the 1000 Genomes Project (1000G), but in 

the regressions themselves took forward only the EduYears chi-square statistics of the ~1.1 

million HapMap3 SNPs with minor allele frequency (MAF) > 0.05; the LD Scores of SNPs 

with low MAFs introduce a great deal of sampling variation. The predictor variables in the 

“baseline” model consisted of one category consisting of all SNPs, 24 main annotations, 

500bp windows around regions qualifying for each of these 24 annotations, and 100bp 

windows around ChIP-seq peaks (regions that are DNase hypersensitive or associated with 

histones bearing the marks H3K4me1, H3K4me3, or H3K9ac). There were thus 53 predictor 



 

 

variables in total. The windows encompassing regions of interest were included to prevent 

SNPs bearing a particular annotation from capturing heritability due to neighboring sites.  

 

It is worth pointing out that, unlike GREML, stratified LD Score regression does not suffer 

from the misallocation of heritability described in Supplementary Information section 4.3. 

Under the model, all that is needed for the accuracy of a heritability partition is the accurate 

estimation of the 𝜏𝑐’s; this is ensured by the standard identification condition in least-squares 

regression, which in our case requires that that the residual terms in the regression model be 

uncorrelated with the stratified LD Scores. The results reported in ref. 3—in particular the 

finding of close-to-zero correlations between total LD Scores and Fst (a measure of genetic 

differentiation among subpopulations) at various geographical scales—bears out the 

plausibility of this condition. Furthermore, since the stratified LD Scores themselves are 

calculated from essentially all 1000G SNPs where both alleles are common in Europeans (a 

superset of the SNPs employed in the regression), the variables on the right-hand side of the 

LD Score regression equation are accurately quantified for the purpose of partitioning the 

genetic variance caused or tagged by SNPs where both alleles are common. 

 

It is of interest to determine the heritability contributed by SNPs located in regions that are 

especially likely to regulate gene expression in cells of a certain type (e.g., cartilage 

progenitors, liver, adipose nuclei, pancreatic islets, frontal lobe, angular gyrus). Gene 

expression is often facilitated or repressed as a result of mechanisms triggered by histone or 

chromatin marks: posttranslational modifications of histones that alter their interaction with 

the DNA wound around them. There are a number of annotations referring to histone marks 

in the baseline model, but the SNPs in each corresponding category are a union of SNPs 

located in regions associated with the defining mark in any cell type. To gain tissue-level 

resolution, we followed the analysis of ref. 1 by grouping 220 distinct types of histone 

marks—defined by both mark and cell type—into 10 broad tissue types 

(ADRENAL/PANCREAS, CENTRAL NERVOUS SYSTEM, CARDIOVASCULAR, CONNECTIVE/BONE, 

GASTROINTESTINAL, IMMUNE/HEMATOPOIETIC, KIDNEY, LIVER, SKELETAL MUSCLE, and 

OTHER).  We then added each of these 10 tissue annotations to the baseline model, one at a 

time, and assessed the magnitude and statistical significance of the enrichment thus observed. 

To benchmark these results, we downloaded the summary statistics of three recent GWAS 

meta-analyses of height4, body mass index (BMI)5, and waist-to-hip ratio adjusted for BMI 

(WHR)6 (http://www.broadinstitute.org/collaboration/giant/index.php) and applied the tissue-

level analysis to these phenotypes. The sample sizes employed in these three meta-analyses 

are similar to our own and therefore enable an informative comparison. 

 

4.4.3 Results   

Supplementary Table 4.4.1 gives the results from estimating the parameters of the baseline 

model. For now we focus on the enrichment statistics. To correct for multiple hypothesis 

testing, we adjusted the significance threshold with a Bonferroni correction for 62 two-sided 

tests of 52 annotations in the baseline model and 10 tissue types; the resulting significance 

threshold is P < 0.05/62 = 8.1×10−4. It can be seen that 10 baseline annotations met this 

threshold. Indeed, 23 annotations met the conventional threshold P < 0.05, more than 7 times 

as many as expected if the enrichment statistics of the baseline annotations are all null.   

 

The functional category exhibiting the most quantitatively substantial and statistically 

significant enrichment corresponds to regions that are evolutionarily conserved in mammals 

(~15-fold). Evolutionarily conserved regions of the genome accumulate base-pair 

http://www.broadinstitute.org/collaboration/giant/index.php


 

 

substitutions differentiating distinct species more slowly than predicted by a model of 

selective neutrality, which implies that mutations in such regions tend to have phenotypic 

effects that are visible to natural selection. The enrichment of evolutionarily conserved 

regions by the SNP-based heritability of EduYears is in line with a strong trend observed in 

previous applications of stratified LD Score regression to 16 other phenotypes1. Also 

consistent with these previous applications is the depletion of heritability from regions that 

are predicted to be transcriptionally repressed (~0.9-fold). 

 

The functional category showing the strongest enrichment after evolutionarily conserved 

regions corresponds to regions associated with the histone mark H3K9ac (~5.6-fold). The 

nomenclature used to classify histone marks indicates the precise nature of a given 

modification. In this case, the particular type of histone is H3, the type of the modified amino 

acid is lysine (which has the abbreviation K), the position of the modified amino acid within 

the protein is 9, and the modification undergone is acetylation. The acetylation of lysine acts 

to reduce the electrical attraction between DNA and the histone residue, which may facilitate 

the expression of genes embedded in the DNA through a number of mechanisms. Indeed, a 

common theme of the significant annotations is residence upstream of protein-coding genes 

and likely regulation of their expression (TRANSCRIPTION START SITE, FANTOM5 ENHANCER, 5-

PRIME UTR, FETAL DNASE I HYPERSENSITIVE, WEAK ENHANCER).  

 

We found that nonsynonymous SNPs account for roughly 3.5 times as much variance as 

expected from the sheer number of SNPs alone, but this enrichment was not statistically 

significant (P = 0.158). The average phenotype analyzed in ref. 1 was found to exhibit more 

than 7-fold enrichment of nonsynonymous SNPs. Although our current estimation precision 

does not allow us to rule out enrichment of this magnitude, we can at least say that the 

genetic architecture of EduYears does not stand out as particularly enriched by 

nonsynonymous sites. 

 

We confirmed that EduYears-associated SNPs enrich regions that are DNase I hypersensitive 

in fetal tissue (Supplementary Table 4.4.1), although the annotation in this analysis refers to 

the union of regions that are DNase I hypersensitive in any fetal tissue (as opposed to just the 

brain). It should be pointed out that the point estimate of 2.361 is only marginally significant. 

The enrichment factor is slightly smaller when we consider the superset of SNPs including all 

those lying either directly in a region found to be DNase I hypersensitive in fetal tissue or 

within 500bp of such a region, but this factor is very highly significant because of the greater 

number of SNPs qualifying for these extended regions and hence smaller standard error (P = 

2.3×10−6). If we take the point estimates at face value, they suggest that SNPs lying very 

close to a peak of assayed DNase I hypersensitivity are only somewhat less enriched by 

EduYears heritable variance than SNPs lying directly within such a peak.  

 

Extended Data Fig. 8a and Supplementary Table 4.4.2 display the results of the tissue-level 

analysis. It is the enrichment of the central nervous system that is strongest and most 

statistically significant when the phenotype is EduYears (~3-fold). When all four traits are 

considered simultaneously, a striking trend becomes evident. Every bar graph in Extended 

Data Fig. 8a corresponding to a tissue type, with one exception, resembles a flight of stairs 

ascending from left to right; these tissues are more enriched by WHR and height than by 

EduYears and BMI. The one exception is the central nervous system, the bar graph of which 

resembles a flight of stairs descending from left to right as a result of this tissue type being 

most enriched by EduYears. The fact that it is BMI whose enrichment profile most closely 



 

 

resembles that of EduYears is explicable in light of the nontrivial magnitude of the genetic 

correlation between these two traits (Fig. 2 and Supplementary Table 3.1). 

 

Most of the enrichments in Extended Data Fig. 8a are greater than one because we did not 

carry out a true partition. Many SNPs are associated with histone marks observed in multiple 

tissues, and thus the addition of each tissue type to the baseline model one at a time can lead 

to the positive enrichment of all types. It is thus of interest to examine the 𝜏𝑐 of each tissue, 

which corresponds to the expected change in the square of a SNP’s GWAS marginal 

regression coefficient (the regression being on the standardized genotype) for each unit 

change in the SNP’s tissue-specific stratified LD Score. Since each 𝜏𝑐 is a partial regression 

coefficient in the stratified LD Score regression model, the just-described change reflects 

statistical control of the 52 variables in the baseline model. The 𝜏𝑐’s are given in the final 

column of Supplementary Table 4.4.2. In contrast to the enrichments, which all deviate from 

one in the positive direction, the signs of the 𝜏𝑐’s are both positive and negative. For instance, 

when the phenotype is EduYears, the only positive estimated 𝜏𝑐’s belong to CENTRAL 

NERVOUS SYSTEM (34.27×10−9), ADRENAL/PANCREAS (14.16×10−9), and 

IMMUNE/HEMATOPOIETIC (3.49×10−9). When the phenotype is height, we see a markedly 

different pattern; now all estimated 𝜏𝑐’s are positive with one exception, which is CENTRAL 

NERVOUS SYSTEM (−56.47×10−9). 

 

We offer the following interpretation of the 𝜏𝑐’s for the sake of concreteness, although it 

should be kept in mind that the validity of the interpretation depends on the quality of the 

baseline annotations as statistical controls and the structural assumptions of LD Score 

regression (e.g., the absence of any relationship between MAF and contributed heritability). 

Suppose that we have two SNPs that are identical in all respects except for the tissues where 

their associated histones are marked; for instance, they may be both noncoding, both located 

in an evolutionarily conserved region, both more than 500bp from a region that is DNase I 

hypersensitive in fetal tissue, and so forth. Also suppose that they both tag no other SNPs 

(total LD Score = 1); this means that each SNP’s GWAS regression coefficient (𝛽𝑗) is in fact 

proportional to its average effect of gene substitution (“true” causal effect)7,8. If the SNP-

based heritability of EduYears is 0.20 (the estimate reported by ref. 9), then each of the ~10 

million SNPs where both alleles are common in Europeans makes an average contribution to 

this heritability of 2×10−8.  

 

Each squared average effect of gene substitution is equal to a linear combination of the 𝜏𝑐’s, 

where the weights are indicators of the annotations. Suppose that the baseline annotations of 

our two matched SNPs are indicative of phenotypic impact and thus predict twice the typical 

squared average effect. If one SNP’s histone is marked only in the central nervous system 

while the other SNP’s histone is marked only in gastrointestinal tissue (𝜏GI = −23.44×10−9), 

then the squared average effects of the two SNPs are predicted to equal ~7.4×10−8 and 

1.7×10−8 respectively.  The SNP located in a stretch of DNA wound around a histone 

modified only in the central nervous system thus accounts for more nearly 4.5 times as much 

EduYears variance as a matched SNP whose histone is modified only in the digestive system. 

  

To put this example in perspective, suppose now that we switch the phenotype from 

EduYears to height, where we have 𝜏GI = 46.97×10−9. Starting with a SNP-based heritability 

of height equal to 0.50 (the GREML estimate reported by ref. 4), we can repeat the exercise 

above and find that a SNP associated with a histone modified only in the digestive system 

accounts for nearly 3.5 times as much variance as that of a matched SNP modified only in the 

central nervous system. If we use connective/bone in the place of gastrointestinal tissue in our 



 

 

exercise (𝜏C/B = 223.19×10−9), we find that a SNP associated with a histone modified only in 

connective/bone tissue accounts for nearly 7.5 times as much height variance as a matched 

SNP whose tissue-level annotations refer only to the central nervous system. 
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4.5 Prioritization of Genes, Pathways, and Tissues/Cell Types with 

DEPICT 

 

4.5.1 Overview 

Here we describe Data-driven Expression Prioritized Integration for Complex Traits 

(DEPICT, www.broadinstitute.org/depict)1, a tool that employs data from massive numbers 

of experiments measuring gene expression to (1) prioritize candidates for the genes whose 

products are altered or regulated by the DNA sites responsible for GWAS signals; (2) 

highlight biological pathways and sets of functionally related genes (henceforth “gene sets”) 

enriched by multiple GWAS signals; and (3) identify tissues and cell types where prioritized 

http://www.broadinstitute.org/depict


 

 

genes are highly expressed. DEPICT has been described in previous publications, but here we 

aim to give a walk-through that is accessible to social scientists and neuroscientists. 
 

As a brief preview of what we find, in our GWAS of EduYears, DEPICT returns robust 

nominations of gene sets pertaining to the central nervous system and neural tissues. More 

specifically, the gene sets matter for many of the stages of brain development following the 

induction of the head: the proliferation of neural progenitor cells, the differentiation of 

neurons from the progenitors, the migration of newly born neurons to the different layers of 

the cortex, the projection of axons from neurons to their signaling targets, the sprouting of 

dendrites and their spines to meet incoming axons, and neuronal signaling and synaptic 

plasticity throughout the lifespan. 

 

4.5.2 Background 

In the GWAS literature, the term locus has come to mean a stretch of the genome centered on 

a SNP showing the strongest evidence of association within a broader region. It is common 

for the locus centered on a lead SNP to contain several genes, and in such cases picking out 

the specific gene whose product is involved in the biology of the focal phenotype poses a 

serious challenge. Addressing this problem of prioritizing genes in a principled and 

comprehensive fashion is a primary motivation of DEPICT. Another application—which in 

fact turns out not depend on the correct nomination of individual genes—is to highlight sets 

of functionally related genes and tissues/cell types enriched by GWAS signals. 

 

4.5.3 Gene Function Prediction for Gene Set Reconstitution 

The initial input to DEPICT consists of results gathered from 77,840 microarray experiments 

across hundreds of studies, each measuring the expression levels of 19,997 genes (the number 

of genes covered by the Affymetrix platforms; see ref. 2 for details). Such an experiment 

measures the expression levels of all genes covered by the microarray platform, in order to 

study the effects of certain treatments, diseases, or developmental cues. Each of the 77,840 

experiments thus reports the quantities of mRNA transcripts mapping to each of the 19,997 

genes, in response to a certain set of conditions. One of the microarrays may have measured 

levels of gene expression in a certain cell type exposed to heat shock; another may have 

measured levels of gene expression in a certain cell type just after its initial differentiation 

from a progenitor cell type. The experiments were performed on different mammalian 

species: two of the platforms were designed for human, whereas one was designed for mouse 

and another for rat. 

 

After appropriate renormalization, the gene-by-gene correlation matrix derived from the 

subset of microarray experiments performed with each species-specific platform was 

subjected to principal components analysis (PCA). PCA is a common technique for 

clustering similar experimental units according to their projections on continuous components 

(linear combinations of the attributes). For example, psychologists often use PCA to convert 

a test-by-examinee matrix of test scores into a test-by-component matrix of “loadings”; those 

tests with large loadings on the same components tend to show higher correlations with each 

other. The same principle applies to the work of Fehrmann et al.2 used in DEPICT; the PCA 

leads to a gene-by-component matrix of loadings, and those genes with large loadings on the 

same components tend to show similar levels of expression across microarray experiments. 

 



 

 

Cronbach’s α was used to determine the reliability of each component (henceforth 

“transcriptional component” or “TC”). This measure of reliability has historically been 

important in the theory and practice of psychological measurement3. The “total score” in this 

computation of Cronbach’s α is the loading-weighted sum of measured expression levels over 

all genes, and a given “item score” is the product of the loading and the expression level. A 

higher value indicates tighter co-expression of the genes with large loadings on the TC; that 

is, the expression levels of all genes with loadings on a highly reliable TC tend to rise or fall 

together across distinct experiments, implicating the products of these genes in shared 

biology. Applying a threshold of α > 0.70 to the reliability measures led to the retention of 

777 and 377 TCs from the respective human platforms, 677 TCs from the mouse platform, 

and 375 TCs from the rat platform. The total number of TCs was thus 2,206.  

 

At this point the DEPICT pipeline had a 19,997×2,206 matrix of loadings. Pers et al.1 then 

adopted 14,461 predefined gene sets taken comprehensively from several bioinformatic 

databases, including Gene Ontology (GO, http://amigo.geneontology.org/amigo)4, the Kyoto 

Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/)5, Reactome 

(http://www.reactome.org/)6, the Mouse Phenome Database within the Mouse Genome 

Informatics project (MP, http://phenome.jax.org/)7, and the InWeb database8. (An example of 

a gene set is all genes placed by the curators of GO in the category FOREBRAIN 

DEVELOPMENT. The MP database is relevant because most human genes have orthologs in 

mice as a result of common descent from a primordial mammalian ancestor.) For each gene 

set and TC, a t-test of the mean difference between the TC loadings of genes within the set 

and all other genes was calculated. A large mean difference indicates that the loadings of 

genes on the focal TC are informative with respect to membership in the predefined gene set. 

The result of this processing step was a 14,461×2,206 matrix of t-statistics. 

 

An analogy to the use of PCA in differential psychology may be helpful. Whereas the first 

principal component (PC) extracted from a test-by-examinee matrix of scores typically 

corresponds to the general factor of cognitive performance (g), the second PC can often be 

interpreted as a “bipolar factor,” on which tests measuring verbal ability have loadings of one 

sign and tests measuring spatial ability have loadings of the other sign. If the constructors of 

the test battery deliberately intended to measure spatial ability with some subset of the tests, 

they might perform a t-test of the mean difference in second-PC loadings between those tests 

putatively measuring spatial ability and all other tests. A large mean difference indicates that 

the second PC does indeed correspond in some way to the desired spatial factor. Note that in 

the context of DEPICT, the P-values yielded by the t-tests need not be interpreted in terms of 

Type 1 error. The t-statistics are simply a means of quantifying the correspondences that exist 

between a priori gene sets and TCs empirically derived from gene co-expression data.  

 

The final step was the calculation of the correlation between the ith gene’s TC loadings (the 

ith row of the gene-by-TC matrix) and the jth predefined gene set’s t-statistics (the jth row of 

the gene set-by-TC matrix). To avoid circularity in cases where a particular gene was part of 

a predefined gene set, that gene was left out from the gene set, the gene set’s t-statistic for 

each TC was recomputed, and the correlation between the gene’s TC loadings and the gene 

set’s t-statistics was calculated. The P-value corresponding to each correlation was converted 

to a Z-statistic, and the resulting 19,997×14,461 gene-by-gene-set matrix of Z-statistics was 

the final output of the pipeline. Because each entry of the gene-by-gene-set matrix is 

quantitative, a given entry will often represent the weight of evidence or the centrality of the 

gene to the set with more precision than the all-or-nothing a priori classifications. For this 

reason we call a given gene’s row of Z-scores in the gene-by-gene-set matrix its memberships 

http://amigo.geneontology.org/amigo
http://www.genome.jp/kegg/
http://www.reactome.org/
http://phenome.jax.org/


 

 

in reconstituted gene sets. (Incidentally, the statistical significance of the correlation between 

a gene’s TC loadings and a gene set’s t-statistics is used by the web-based Gene Network tool 

to determine whether a GO, KEGG, or Reactome category should be returned to a user 

entering the gene as a search term. Recall that we used these search results to construct 

Supplementary Table 4.1.5. Ref. 9 describes how the significance threshold is chosen to 

satisfy FDR < 0.05.) 

 

Returning to our analogy between DEPICT and a potentially parallel use in differential 

psychology, we can think of what it means for a newly designed test to have a high 

membership score with respect to a test battery originally purporting to measure spatial 

ability. The new test must have high loadings on PCs that strongly differentiate the original 

spatial tests from other tests and low loadings on PCs that do not make this discrimination. 

Suppose that there is another PC of smaller eigenvalue, on which tests of perceptual speed 

have high loadings (while the original spatial tests have inconsistent or uniformly low 

loadings). Then the new test—despite a high loading on the spatial PC—cannot have a high 

membership score if it also has a loading of large absolute value on the perceptual PC. In 

light of the small residual correlations remaining between the original tests measuring spatial 

ability and perceptual speed after the outer products of the higher PCs have been removed 

from the correlation matrix, the new test is too strongly correlated with the tests of perceptual 

speed to qualify as a good member of a reconstituted spatial battery. Similarly, in order for a 

gene to be a strong member of a reconstituted gene set (e.g., the GO category FOREBRAIN 

DEVELOPMENT), it must not only be co-expressed with genes that are heavily weighted in 

those linear combinations of microarray measurements successfully distinguishing 

FOREBRAIN DEVELOPMENT genes from others, but also fail to exhibit residual co-expression 

with genes that are heavily weighted in other combinations.  

 

If a gene is a highly ranked member of a gene set to which it does not nominally belong, we 

have evidence of “hidden biology”: a participation of the gene’s product in a particular 

biological pathway—or a localization of the product in a particular cell component or tissue 

type—that was not previously recognized. Because a high rank must derive from a 

correlation between loadings of genes and t-statistics of gene sets across thousands of TCs, 

this approach to uncovering such hidden biology takes advantage of co-expression patterns 

that can be extremely subtle.  

 

To summarize, a reconstituted gene set is initially seeded by a category found in one of the 

databases cited earlier. Co-expression of genes across many thousands of microarray 

experiments is the basis for replacing binary membership scores on the part of genes with 

quantitative weights. By boosting the membership scores of some genes from zero to a 

positive value, this latter step effectively brings many genes into the gene set with the 

following property: they were not included in the original set by the scientists curating the 

database of origin, but nevertheless share subtle patterns of co-expression with many of the 

seed members. Pers et al. have shown that gene sets known to be biologically relevant to the 

phenotype are much more likely to be prioritized when they are reconstituted and employed 

by DEPICT than when the original sets are employed by other GWAS enrichment-analysis 

tools1. (Interestingly, the performance of these other tools can be improved by supplying the 

reconstituted gene sets as input in place of the original sets.) The reconstituted gene sets are 

the basis for our nomination of genes and gene sets, applications to which we now turn. 

 



 

 

4.5.4 Gene Prioritization 

Any particular locus centered on a SNP may contain multiple genes. By exploiting the fact 

that genes involved in a particular phenotype tend to be co-expressed and share similar 

annotations in bioinformatic databases, DEPICT can nominate a gene whose product is likely 

to be altered or regulated by the causal site in the locus. At a given locus where a gene must 

be nominated, DEPICT calculates the average correlation between each gene’s vector of 

memberships in reconstituted gene sets and the corresponding vectors of genes lying in all 

n−1 other significant GWAS loci. Each of these correlations is converted to a Z-statistic, and 

a gene with a high Z-statistic may then be nominated as the mediator of the SNP’s phenotypic 

effect. The empirical mean and standard deviation of the Z-statistic under the null hypothesis 

is obtained by drawing a random set of n−1 loci (each centered on a SNP reaching the chosen 

significance threshold in one of 200 simulated GWAS of a non-heritable phenotype and 

constrained to match its corresponding actual GWAS locus in gene density), recalculating the 

focal gene’s Z-statistic with the reconstituted memberships of the genes in the matched loci, 

and repeating this whole process until 500 Z-statistics are in hand. The gene’s prioritization 

P-value is derived from its actual Z-statistic after this has been adjusted in light of its 

empirical mean and standard deviation under the null hypothesis. The FDR associated with a 

given gene’s P-value is obtained by dividing the number of times the P-value is exceeded in 

simulated GWAS of non-heritable phenotypes by the DEPICT-determined rank of the gene in 

the actual GWAS results and normalizing by the number of simulations.  

 

4.5.5 Reconstituted Gene Set Prioritization 

It is also valuable to prioritize a subset of the reconstituted gene sets themselves, since the 

sets often correspond to entire biological pathways and cell components that may be better 

characterized as a whole than many individual genes. For each reconstituted gene set, 

DEPICT sums the Z-statistics in its column of the gene-by-gene-set matrix corresponding to 

genes contained in the n GWAS loci and then tests the significance of the resulting 

enrichment statistic by repeatedly sampling random sets of n loci (matched to the actual 

GWAS loci by gene density) from the entire genome to estimate the empirical mean and 

standard deviation of the enrichment statistic’s null distribution. These estimates are used to 

calculate a P-value. Simulated GWAS of randomly generated non-heritable phenotypes are 

used to estimate the FDR associated with any given P-value threshold for declaring that the 

genes within a set enrich the loci centered on high-ranking SNPs in the actual GWAS results. 

 

Simulations have shown the P-values returned by DEPICT’s procedures for prioritizing 

reconstituted gene sets and individual genes are uniformly distributed when the phenotype is 

non-heritable1. In non-null cases matching by gene density may actually be a conservative 

procedure; see Supplementary Information section 4.6 for discussion. 

 

The application of DEPICT to a GWAS meta-analysis with as large a sample size as ours can 

be expected to return a long list of reconstituted gene sets, and many pairs of these sets will 

have vectors of membership scores that are positively correlated. To clarify the interpretation 

of the results, it is therefore useful to partition the significant reconstituted gene sets into 

clusters. For this purpose DEPICT employs the Affinity Propagation algorithm10, which also 

selects an exemplar for each cluster. Reconstituted gene sets that are members of the same 

cluster tend to be more highly correlated with each other than with members of other clusters. 

In our judgment the exemplary reconstituted gene set giving its name to the cluster typically 

better represents the cluster as a whole than the member gene set with the lowest enrichment 

P-value. 



 

 

 

4.5.6 Tissue/Cell Type Prioritization 

DEPICT determines whether the genes overlapping GWAS loci are expressed more highly in 

a particular tissue or cell type than other genes, on average, by employing a gene-by-tissue 

matrix that is conceptually similar to the gene-by-gene-set matrix.  

 

We downloaded normalized RNA-Seq gene expression data from the GTEx project11 (pilot 

release, 01/31/2013, patch 1). We further processed the RNA-Seq data by winsorizing values 

larger than 50 reads per kilobase of transcript per million reads mapped (RPKM) to 50 (as 

previously done in ref. 12) and transforming all values to log2(1+RPKM) values. (The RPKM 

unit thus corresponds to the relative abundance of sequenced RNA transcripts mapped to the 

given gene.) After discarding genes either not covered by DEPICT or showing no variance 

across tissues, we ended up with 19,414 genes. We discarded tissues with fewer than 10 

samples and computed the median expression level of each gene in each of the remaining 37 

tissues. We used the resulting 19,414×37 gene-by-tissue matrix of normalized scores in the 

place of the matrix derived from microarray samples accompanying the standard version of 

DEPICT1.  

 

The algorithm for identifying columns of the matrix (tissues or cell types) that are 

significantly enriched by the expression of genes overlapping EduYears-associated loci is 

conceptually identical to the one used to prioritize reconstituted gene sets. 

 

4.5.7 Parameters Used in DEPICT  

Scripts from GitHub were used to run all analyses (https://github.com/DEPICTdevelopers; 

the version at 139 commits). We included as input all SNPs reaching the DEPICT default P < 

1×10−5 in the GWAS meta-analysis of EduYears. Many of our analyses suggest that SNPs 

attaining this significance threshold are unlikely to be false positives due wholly to residual 

stratification (Extended Data Fig. 3). DEPICT was run with the default settings: 

 

1. independently associated SNPs were defined as those showing LD to the extent r2 

< 0.1 and located more than 500kb apart; 

2. an independent associated locus was defined as the genomic region encompassing 

all SNPs in LD with the defining independent SNP to the extent r2 > 0.5; 

3. associated loci with overlapping genes were merged; 

4. SNPs within the major histocompatibility complex region (chromosome 6, base 

pairs 25,000,000 through 35,000,000) were excluded; and 

5. 500 sets of matched SNPs were used to calculate each P-value; 50 replications 

were used for FDR estimation; normalized expression data from 77,840 

Affymetrix microarrays were used for the reconstitution of gene sets; and 14,461 

reconstituted gene sets were used for the enrichment analysis. 

 

The source code to identify independent signals and loci can be found at 

https://github.com/perslab/gwas-snps-loci. The DEPICT locus-construction steps resulted in 

273 independent loci. After removing genes not covered by DEPICT, we were left with 685 

genes (Supplementary Table 4.1). A gene is not covered by DEPICT if no mRNA transcripts 

mapping to the gene can be assayed by an Affymetrix probe in a manner that reliably 

survives quality control. 

 

https://github.com/DEPICTdevelopers
https://github.com/perslab/gwas-snps-loci


 

 

4.5.8 Validation of the Significant Reconstituted Gene Sets 

Supplementary Table 4.5.1 lists the 283 reconstituted gene sets (pathways or cell 

components) where genes in the EduYears loci are disproportionately found (FDR < 0.05). 

For each significantly enriched gene set, Supplementary Table 4.5.1 also gives the 20 genes 

in the EduYears loci with the highest membership scores.  

 

It is possible for the reconstitution of a gene set to reweight certain seed members 

unfavorably and thus alter the meaning of the set. For this reason we tested the validity of the 

gene sets upon reconstitution by examining the average membership score of the original 

seed genes. To benchmark these 283 average scores, we compared each of them to the 

average membership scores of seed genes from 300 randomly selected gene sets in the 

DEPICT inventory that did not achieve significance in our study of EduYears. We chose to 

use nonsignificant gene sets as benchmarks because many pairs of significant gene sets are 

highly correlated and thus especially likely to share many seed genes. We discovered that two 

of these benchmark gene sets were exact duplicates despite their different identifiers and 

removed one. 

 

The second-to-last column of Supplementary Table 4.5.1 gives the fraction of the 299 

randomly chosen gene sets whose seed members have a higher average membership score 

with respect to the reconstituted version of the focal gene set than the seed members of the 

focal gene set itself. An evident pattern is that the majority of the gene sets that fare badly 

according to this benchmark are protein-protein interaction (PPI) networks taken from the 

InWeb database. A protein-protein interaction network is a group of proteins whose members 

can maintain physical contact with a given focal protein, and it is perhaps surprising that gene 

sets of this nature appear not to retain their meanings upon the application of a reconstitution 

method based on gene co-expression. In contrast, just about all of the significant gene sets 

taken from GO, KEGG, Reactome, and MP appear to mean much the same thing after the 

reconstitution, as their seed members are usually outscored by few or none of the 299 random 

gene sets. A notable exception is the MP category DECREASED FEAR-RELATED RESPONSE.  

 

The last column of Supplementary Table 4.5.1 gives the fraction of the 299 randomly chosen 

gene sets in which the seed members of the focal set have a higher average membership than 

in the focal set itself. This measure has a somewhat different interpretation than the first one 

discussed above. Whereas the first measure is analogous to an assessment of whether the 

original residents of a building are still “at home” in that building after an entire 

neighborhood has been redeveloped, the second is analogous to an assessment of whether the 

original residents are now a better fit for some other building. This measure, however, also 

singles out many of the PPI gene sets as potentially problematic.  

 

Rather than proposing a biological interpretation of this pattern, we instead pass over the PPI 

gene sets in our subsequent discussion, which will be organized by clusters of closely related 

gene sets, and proceed roughly from northwest to southeast in Fig. 3. We acknowledge that 

aspects of our discussion below are somewhat arbitrary; for instance, many genes discussed 

in the context of one category are also seed or high-ranking reconstituted members of a 

category discussed separately, and many undoubtedly important genes and pathways are not 

even mentioned. The reader should therefore treat the narrative summary below as 

representing a necessarily partial and limited view that is nevertheless useful as a way of 

framing what may otherwise be an overwhelming collection of facts. For brevity, we omit all 

clusters without at least one member set attaining P < 1×10−6. 

 



 

 

4.5.9 Significant Genes and Gene Sets 

DENDRITIC SPINE ORGANIZATION is named after the GO pathway defined as “a process that is 

carried out at the cellular level which results in the assembly, arrangement of constituent 

parts, or disassembly of a dendritic spine. A dendritic spine is a specialized protrusion from a 

neuronal dendrite and is involved in synaptic transmission.” When an extending axon makes 

contact with a dendrite in the course of development, the contact triggers the growth of 

mushroom-shaped spines from the dendrite that support various proteins needed in synaptic 

communication. This process depends on signaling between membrane-bound ligands called 

ephrins and receptors localized to dendrites13. One of these receptors is the product encoded 

by the DEPICT-prioritized gene EPHA5. 

 

DENDRITE is named after a rather large and heterogeneous GO category; this 19-set cluster 

has the same character as its exemplar and is thus difficult to summarize. We will start by 

mentioning some prominent genes that are seed or high-ranking reconstituted members of at 

least one member gene set. GRIN2A encodes an ionotropic glutamate receptor, emerges as a 

top DEPICT-prioritized member of several gene sets in the cluster, and was a highly 

prioritized gene in the most recent GWAS of schizophrenia14. GRM3 encodes a metabotropic 

glutamate receptor, emerges as one of the top DEPICT-prioritized members of reconstituted 

DENDRITIC SHAFT, and was also a highly prioritized schizophrenia gene. HCN1, which ends 

about 70kb from the lead EduYears SNP rs4493682, emerges as a highly ranked member of 

IMPAIRED SYNAPTIC PLASTICITY. This gene encodes a dendrite-localized hyperpolarization-

activated ion channel, which acts to stabilize the dendritic membrane potential in the face of 

both excitatory and inhibitory input. It has recently been found that HCN1 harbors sites 

where de novo mutations cause a syndrome characterized by epilepsy, intellectual disability, 

and autism spectrum disorder15. Note that HCN1 was not present in the lists of syndromic 

genes used to generate Extended Data Fig. 9b. The identification of these genes and their 

pathways/cell components confirms our nomination of synaptic communication, mediated 

especially by the neurotransmitter glutamate, in our previous study of cognitive 

performance16.  

 

Many of our genes are implicated in the formation and movement of vesicles, which are 

fluid-filled sacs responsible for transporting cargo between cellular locations. In a neuron the 

most important vesicles enclose neurotransmitters; these vesicles reside in the axon terminal 

and release their contents out into the synaptic cleft upon the opening of voltage-gated 

calcium channels. (Note that VOLTAGE-GATED CALCIUM CHANNEL COMPLEX is one of our 

clusters.) The protein components of these synaptic vesicles are manufactured in the neuronal 

cell body and transported to the axon terminal along cytoskeletal tracks known as 

microtubules. Vesicles in neurons can contain important cargo other than neurotransmitter, 

and a plausible example in our results is supplied by NBEA, a high-ranking member of 

DENDRITIC SHAFT. The expression of this gene is essential in the dendritic contribution to 

synapse formation, perhaps because of a critical role in transporting ionotropic glutamate 

receptors and other key proteins from their sites of manufacture in the cell body to their 

dendritic destinations17. Another possible example is given by NEGR1, which encompasses 

the lead EduYears SNP rs34305371. Strongly implicated in obesity18, this gene is a high-

ranking member of TRAFFICKING OF AMPA RECEPTORS (i.e., transport of ionotropic glutamate 

receptors). Finally, we have the closest gene to the lead EduYears SNP rs11712056, CAMKV 

(formerly known as 1G5), about which little is apparently known except that its product is 

often found in association with vesicles19. CAMKV is the gene in our DEPICT-defined loci 

with the second highest membership score with respect to TRAFFICKING OF AMPA RECEPTORS. 

 



 

 

AXONOGENESIS is named after the GO category referring to “the morphogenesis or creation of 

shape or form of the developing axon,” and its important member gene set AXON GUIDANCE is 

the GO pathway defined as “the chemotaxis process that directs the migration of an axon 

growth cone to a specific target site in response to a combination of attractive and repulsive 

cues.” (The KEGG and Reactome instances of AXON GUIDANCE are also covered by DEPICT 

and returned as significantly enriched. A growth cone is a paddle-shaped structure at the end 

of an extending axon that simultaneously moves toward the target while lengthening the axon 

trailing behind it. The GO cell compartment GROWTH CONE is a significantly enriched 

member of the cluster DENDRITE. Growing dendrites also form growth cones, albeit smaller 

ones that are less well studied.) The process of axon growth is truly a marvel of nature, 

analogous to a railroad track extending autonomously to a distant but highly specific address 

by following local cues only. A class of proteins known as netrins plays a critical role in this 

process by diffusing from targets and boundaries; a growing axon will move either toward or 

away from a higher concentration of netrin. The DEPICT-prioritized gene DCC encodes a 

netrin receptor expressed in growing axons and often leading them toward critical crossover 

points at the midline of the body20. Another DEPICT-prioritized gene, SEMA6D, belongs to 

the large family encoding semaphorins, which typically act as repulsive guidance cues by 

binding to receptors on growth cones and bringing about a temporary halt. Recent studies 

suggest that the SEMA6D protein can either attract or repel axons, depending on the 

extracellular context21. 

 

Microtubules serve as internal scaffolds of axon growth, extending onward at the end 

pointing away from the cell body of the originating neuron. MAPT, the gene encompassing 

the lead EduYears SNP rs192818565, encodes a member of the microtubule-associated 

protein (MAP) family that is not present in dendrites but active in the distal ends of axons. 

The special combination of stability and flexibility required by extending microtubules in 

axonogenesis is owed to microtubule-associated protein tau (MAPT), and MAPT itself is a 

highly ranked member of reconstituted GROWTH CONE, SITE OF POLARIZED GROWTH, AXON, 

ABNORMAL AXON GUIDANCE, AXON GUIDANCE (REACTOME), and CRMPS IN SEMA3A SIGNALING. 

Tangles of hyperphosphorylated MAPT are often observed in the neurons of patients with 

Alzheimer’s disease (AD), although whether these tangles are a correlate/consequence of AD 

pathogenesis or a cause is uncertain22. De novo mutations of MAPT have been observed in 

patients suffering from frontotemporal dementia and parkinsonism.   

 

SIGNALING BY ROBO RECEPTOR is named after a Reactome pathway centered on a type of 

receptor active in growth cones extending toward the same side of the body. The ligands of 

Robo receptors are the Slit proteins, which are secreted by midline cells for the purpose of 

repelling axons that have already crossed the midline. The DEPICT-prioritized gene 

SLITRK1 belongs to a family of genes whose products share much sequence homology with 

Slit proteins, and it shows strong membership in SIGNALING BY ROBO RECEPTOR and several 

members of the AXONOGENESIS cluster. A number of studies have implicated SLITRK1 in 

various aspects of synapse formation, including the development of both axons and 

dendrites23,24. 

 

The first axon to reach a particular address in the nervous system is sometimes called a 

pioneer. Follower axons have a somewhat easier time because they can rely on guidance 

provided by molecules on the surface of the pioneer. Another term for bundles or tracts of 

axons is fascicles, and thus axons that grow together are said to be fasciculated. The 

DEPICT-prioritized gene CELSR3 (which starts ~70kb from the lead EduYears SNP 

rs35761247) is a seed member of AXONOGENESIS retaining a high membership score, and it 



 

 

encodes a transmembrane protein implicated in fasciculation. The inactivation of CELSR3 in 

mice leads to selective anomalies of several major axonal tracts, including a disconnection of 

the neocortex from subcortical areas25. Another DEPICT-prioritized gene, PCDH17, stops 

~100kb from the lead EduYears SNP rs9537821 and exhibits strong memberships in 

ABNORMAL AXON GUIDANCE, AXON GUIDANCE (REACTOME), and AXON GUIDANCE (KEGG). It 

has recently been found that when both fasciculated axons express this gene, the clustered 

PCDH17 recruits other molecules that shepherd the growth cone of the follower along its 

way26. Knocking out PCDH17 in mice leads to a reduction in the size and integrity of the 

amygdala-to-hypothalamus axonal tract. 

 

ABNORMAL CEREBRAL CORTEX MORPHOLOGY is named after the MP category defined to 

include genes that, when knocked out or otherwise targeted in mice, lead to a “structural 

anomaly … on the surface of the cerebral hemisphere that develops from the telencephalon 

and folds into gyri.” Because of the moderate genetic correlation between EduYears and 

intracranial volume (Fig. 2 and Supplementary Table 3.1), it is worthwhile to single out the 

most significantly enriched member set, DECREASED BRAIN SIZE, the seeds of which can lead 

to a reduction of brain weight or volume when targeted. The DEPICT-prioritized members 

FOXP2 and TBR1 encode transcription factors that are active during neural development, and 

assays of both factors may be used to determine the stage of neuronal migration and the layer 

of cortex affected by an experimental perturbation of brain size or structure27–29. FOXP2 was 

the first gene to be implicated in language, and it has undergone two nonsynonymous 

substitutions in the human lineage since its divergence from other primates30,31. (We note, 

however, that at least one small-sample study has failed to find a relationship between SNPs 

in FOXP2 and human brain structure32.) The DEPICT-prioritized member ZIC2 can mutate to 

cause holoprosencephaly (failure of the forebrain to develop into two hemispheres) in both 

mice and humans and microcephaly (abnormally small brain size) in humans, although the 

precise mechanism of action involving the putative transcription factor encoded by this gene 

remains to be elucidated33. Our lead EduYears SNP rs12646808 is ~4kb from the end of the 

seed gene HTT, where mutations in the form of expanding trinucleotide repeats are 

responsible for Huntington’s disease. The normal (“wild-type”) form of the protein huntingtin 

has many functions that are not well understood, but it has been found that a drastic reduction 

of its levels in mice leads to disruptions of neurogenesis and malformations of the cortex34. 

Several DEPICT-prioritized genes have even stronger reconstituted memberships in 

DECREASED BRAIN SIZE than the seed genes just mentioned; these include the gene closest to 

the lead EduYears SNP rs9320913, POU3F2 (known until recently as BRN2), which was 

prioritized in our previous study of cognitive performance16. Like FOXP2 and TBR1, 

POU3F2 is a transcription factor that appears to regulate its target genes in a particular class 

of neurons during and after their radial migration to their destined cortical layers35,36. 

FOREBRAIN DEVELOPMENT is named after the GO pathway defined as “the process whose 

specific outcome is the progression of the forebrain over time, from its formation to the 

mature structure.” The seed members of the gene sets in this cluster that are prioritized by 

DEPICT (TBR1, FOXP2, ZIC2, POU3F2, DCC, EPHA5, GRIN2A) have nearly all been 

mentioned already. The names of certain sets—ABNORMAL TELENCEPHALON DEVELOPMENT, 

CENTRAL NERVOUS SYSTEM NEURON DIFFERENTIATION, CEREBRAL CORTEX CELL MIGRATION—

serve to emphasize the many different contiguous stages of brain development implicated by 

our GWAS of EduYears. So far we have discussed relatively later stages, such as the inside-

out migration of increasingly later-born cortical neurons to more outward layers, the wiring 

of the axon-dendrite architecture connecting different neurons, and synaptic communication 



 

 

and plasticity (the latter occurring throughout life). We will shortly turn to evidence that 

implicates the earlier events comprising the differentiation of neurons from progenitor cells. 

 

SIGNALING BY EGFR is named after the Reactome pathway centered on the epidermal growth 

factor receptor (EGFR, formerly ErbB1). EGFR is a member of a family that also includes 

ErbB2, ErbB3, and ErbB4. Upon binding their ligands, these transmembrane receptors 

activate a cascade of processes including cell proliferation, inhibition of apoptosis 

(programmed cell death), and migration. The member set SIGNALING BY EGFR IN CANCER was 

the most significantly enriched pathway in a recent GWAS of intracranial volume37. This 

pathway is active in many aspects of brain development, one of which is the development of 

glial cells—non-neuronal cells in the brain that perform a variety of supportive functions 

such as the insulation of axons, supply of nutrients and oxygen, and removal of waste 

products, although there continue to be suggestive reports of astrocytic glial cells performing 

some information-processing role in humans38. Glioblastoma is the most common malignant 

primary brain tumor diagnosed in human adults, and the majority of cases are characterized 

by somatic mutations in both the EGFR and phosphatidylinositol 3-kinase (PI3K) pathways. 

(Two PI3K pathways attained significance in the GWAS of intracranial volume, and in our 

own results the gene set PI3K EVENTS IN ERBB4 SIGNALING is a significant member of the 

SIGNALING BY EGFR cluster.) The coordinated overexpression of genes in these two pathways 

yields up to a 50-fold overproduction of glial cells in the brains of Drosophila larva39. A 

naïve inference from these results would be that the functioning of a brain consisting of more 

neurons may be improved by a concomitantly larger “support staff” of glial cells. Whatever 

the merit of this interpretation, we can say that the pathways represented by these 

reconstituted gene sets are of some importance in EduYears, given the many genes in 

Supplementary Table 4.1 with very low DEPICT prioritization P-values and strong 

memberships in at least one of these sets (PPP6R2, MEF2C, USP33, ZSWIM6, SBNO1, 

PLK2). Although not prioritized by DEPICT, ERBB3 starts ~57kb from the lead EduYears 

SNP rs2456973 and is nominated as a causal EduYears gene by three other lines of evidence, 

including the significant Gene Network search results REGULATION OF ACTION POTENTIAL IN 

NEURON and AXON ENSHEATHMENT.  

 

NPBAF COMPLEX is named after the GO cellular component defined as “a SWI/SNF-type 

complex that is found in neural stem or progenitor cells.” First discovered in yeast, SWI/SNF 

is a chromatin remodeler composed of several gene products, and its function is to dissociate 

targeted segments of DNA from their nucleosomes in order to expose enhancers to 

transcription factors. (If a corepressor complex binds to the SWI/SNF-like complex, then the 

complex as a whole may down-regulate gene expression.) The human ortholog is called BAF; 

the prefixes es, np, and n stand for embryonic stem, neural progenitor, and neuronal 

respectively. During the development of the mammalian nervous system, each BAF complex 

swaps out certain subunits and thus becomes the next type of complex in the sequence. These 

switches appear to occur in all cells becoming neurons, indicating that they are a fundamental 

component of abandoning the multipotent condition and committing to a neuronal fate40. A 

recent study of mice found that knocking out SMARCC2 (also known as BAF170), whose 

product is a subunit of npBAF, increases the pool of progenitor cells and ultimately the size 

of the cortex; conversely, overexpressing this gene in transgenic mice leads to a reduction in 

the number of cortical neurons41. The underlying mechanism appears to be competition 

between the products of SMARCC2 and SMARCC1 (also known as BAF155) for occupancy 

of the BAF complex. Thus, for instance, knockout of SMARCC2 leads to the retention of 

SMARCC1 in the BAF complex and a greater supply of progenitor cells capable of 

producing multiple neuronal lineages. Of the genes in this study showing significantly 



 

 

different expression levels in the knockout mice, 35 have gene symbols coinciding with those 

in our list of DEPICT-prioritized genes (OR ≈ 1.8), including TBR1, FOXP2, FOXO6, ZIC2, 

MAPT, DCC, SEMA6D, EPHA5, CELSR3, CAMKV, ZSWIM6, and PLK2.  

 

SMARCC1 itself is prioritized by DEPICT and lies ~800kb upstream from a group of 4 lead 

EduYears SNPs on chromosome 3 that define a locus including CELSR3; SMARCC1 itself is 

the gene closest to a DEPICT-defined independent SNP falling short of P < 5×10−8. The 

DEPICT-prioritized gene SMARCA2 (also known as BAF190) encodes one of the two 

proteins that can fill the role of the core ATPase subunit of the BAF complex, and its start 

site lies ~270kb upstream of the lead EduYears SNP rs1871109. 

 

We come now to the final cluster of reconstituted gene sets in our narrative summary, 

TRANSCRIPTION COFACTOR ACTIVITY, which is named after the GO molecular function 

defined as “interacting selectively and non-covalently with a regulatory transcription factor 

and also with the basal transcription machinery in order to modulate transcription.” This large 

and diverse cluster includes TRANSCRIPTION COACTIVATOR ACTIVITY (the most significantly 

enriched gene set in the entire analysis), TRANSCRIPTION FACTOR BINDING, CHROMATIN 

REMODELING COMPLEX, TRANSCRIPTION COREPRESSOR ACTIVITY, RNA POLYMERASE II 

TRANSCRIPTION COFACTOR ACTIVITY, and CHROMATIN BINDING. The names of the constituent 

gene sets broadly refer to transcriptional regulation and chromatin remodeling, pathways that 

have been implicated in studies of neuropsychiatric disorders40,42–43. Indeed, our discussion of 

the other clusters has already made it plain that EduYears depends on the action of many 

transcription factors and chromatin remodelers. The exemplars of TRANSCRIPTION COFACTOR 

ACTIVITY and HISTONE ACETYLTRANSFERASE COMPLEX are highly correlated. In contrast to 

the BAF complex, which displaces histones, the histone acetyltransferase complex marks 

histones with acetyl groups while leaving them in place; the end result of greater DNA 

accessibility is similar. 

 

Given that so many of the genes discussed above in relation to brain size and structure are 

seed members of one or more sets in the TRANSRIPTION COFACTOR ACTIVITY cluster (TBR1, 

FOXP2, ZIC2, POU3F2, SMARCA2, SMARCC1), we are not surprised to find the MP 

category INCREASED BRAIN SIZE placed here as well. The top DEPICT-prioritized member of 

this set is NFIB, which encodes a transcription factor that can be deleted in mice to produce 

deficits in the differentiation of neurons from their progenitors (reviewed in ref. 44). 

 

4.5.10 Significant Tissues 

Extended Data Fig. 8b and Supplementary Table 4.5.2 gives the results of applying DEPICT 

to the GTEx expression data. There are 13 neural tissues in this analysis, and it happens that 

they are also the 13 most significantly enriched tissues—and, in fact, the only tissues clearing 

the threshold FDR < 0.05. 

 

4.5.11 Comparison with Other Phenotypes 

DEPICT has now been applied in enough large-scale GWAS to motivate an overview of its 

results across phenotypes. Supplementary Table 4.5.3 provides the results of a coarse 

comparison. The column reporting prioritized gene sets gives the terms constituting the 20 

most significant instances after excluding InWeb PPI subnetworks and the MP category 

DECREASED FEAR-RELATED RESPONSE, although in all applications far more than 20 gene sets 

showed low P-values and FDRs.  



 

 

 

The comparison shows that DEPICT is not biased toward the nomination of terms related to 

the central nervous system. For example, when applied to the latest GWAS of height, 

DEPICT highlighted gene sets such as CHORDATE EMBRYONIC DEVELOPMENT, DECREASED 

EMBRYO SIZE, SKELETAL SYSTEM DEVELOPMENT, and CARTILAGE DEVELOPMENT; when 

applied to Crohn’s disease (an autoimmune disorder), the most significant gene sets included 

REGULATION OF IMMUNE RESPONSE, T-CELL ACTIVATION, and RESPONSE TO CYTOKINE 

STIMULATION. 
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4.6 Enrichment of Loci by Genes Implicated in Syndromic Disorders 

 

4.6.1 Overview 

Common variants of small effect and de novo mutations of large effect, affecting the same 

trait (or closely related traits), often map to the same genes. Here we determined whether the 

genes implicated by our GWAS meta-analysis of common variants associated with EduYears 

also tend to be genes containing sites where de novo mutations are known or believed to 

cause one of three syndromic forms of impaired cognitive function (intellectual disability, 

autism spectrum disorder, schizophrenia). Our two distinct approaches to testing enrichment 

consistently indicate that EduYears-associated loci are indeed enriched by genes where de 

novo mutations have been implicated in these syndromic disorders. The biological insights 

obtained from studies of these disorders thus have some applicability to educational 

attainment. 

 

4.6.2 Background 

Some large-scale GWAS have found that loci centered on “common SNPs” (where the 

frequencies of both alleles are at least moderate) tend to contain genes where de novo 

mutations produce large and deleterious effects on related traits. For example, the Psychiatric 

Genomics Consortium’s most recent GWAS of schizophrenia (SCZ) found that their top loci 

show substantial overlap with genes where de novo mutations may have large effects on SCZ 

itself, autism spectrum disorder (ASD), and intellectual disability (ID)1. 

 

We looked for a similar pattern in loci defined by SNPs associated with EduYears in our 

GWAS meta-analysis. We will call ID, ASD, and SCZ syndromic forms of impaired 

cognitive function because these disorders (especially when caused by de novo mutations) 

often co-occur with other physical and behavioral symptoms, although it should be kept in 

mind that this term is often restricted to forms of these disorders that invariably co-occur with 

such symptoms. 

 

Intellectual disability is defined as a combination of very low cognitive performance (as 

assessed with a validated psychometric instrument) and poor adaptation to the social and 

practical challenges of everyday life, arising before the onset of adulthood. We have already 

demonstrated that common SNPs give rise to a strong genetic correlation between cognitive 

performance and EduYears (Fig. 2 and Supplementary Table 3.1). Postmortem studies of 

human brains and animal models of ID-causing conditions such as fetal alcohol exposure 

implicate perturbed neuronal migration and dendritic abnormalities in the etiology of this 

syndrome2,3. Autism spectrum disorder refers to a number of diseases sharing in common the 

symptoms of impaired social skills and excessive interest in narrow and repetitive pursuits. It 

is usually diagnosed at a young age; many forms of ASD are characterized by delayed 

language and poor cognitive performance. Schizophrenia is a disorder of thought 

characterized by delusions, hallucinations, and withdrawal from social interactions, and it is 

often accompanied by gross brain abnormalities such as the reduced volume of particular 

regions. Unlike ID and ASD, SCZ is typically diagnosed in late adolescence or early 

adulthood. 

 



 

 

We now briefly describe the two complementary approaches that we used to test enrichment 

of EduYears-associated loci by genes where de novo mutations have been implicated in the 

syndromic diseases described above. In the first approach, we took forward the set of genes 

nominated by DEPICT for involvement in EduYears and examined the respective 

intersections of this set with syndromic genes for ID, ASD, and SCZ. Because DEPICT’s 

nominations at different loci are not independent, it is difficult to test the statistical 

significance of the resulting enrichment statistics. For this reason we determined whether 

DEPICT is more likely to prioritize syndromic genes for ID, ASD, and SCZ when the GWAS 

phenotype is EduYears rather than body mass index (BMI)4, height5, or waist-to-hip ratio 

adjusted for BMI (WHR)6. All three of these anthropometric traits have been recently 

interrogated by DEPICT in GWAS meta-analyses employing sample sizes comparable to 

ours.  

 

In the second approach, we determined whether genes centered on SNPs attaching the 

threshold P < 5×10−8 loci show an unusually large intersection with syndromic genes when 

compared to sets of loci randomly drawn from across the genome but constrained to match 

certain properties of the GWAS loci. While this latter approach has the advantage of enabling 

the calculation of empirical P-values, it may be overly conservative in that any inherent 

difference between EduYears and other phenotypes in a property used for selecting matched 

loci (e.g., gene density near causal sites) may produce “control groups” that are spuriously 

similar to the EduYears loci themselves. 

 

4.6.3 DEPICT-nominated Genes for the Four GWAS Phenotypes 

Our Supplementary Table 4.1 lists all 146 genes that were prioritized by DEPICT for 

EduYears (FDR < 0.05). Supplementary Table 24 of ref. 4 lists the 202 genes with valid 

symbols that were similarly prioritized by DEPICT for BMI; Supplementary Table 16 of ref. 

5, the 649 genes for height; and finally Supplementary Table 21 of ref. 6, the 31 genes for 

WHR. 

 

4.6.4 Constructing the Lists of Syndromic Genes 

The list of ID genes was constructed from Supplementary Table 10 of ref. 7. The authors of 

this study located a larger set of putative ID genes in a systematic literature review and 

database search. They then listed the subset of genes found to contain de novo mutations in at 

least five ID patients. This original list contained 528 gene symbols. After using the SNPsnap 

database (http://www.broadinstitute.org/mpg/snpsnap/database_download.html)8 to map the 

gene symbols to Ensembl identifiers, we discarded all symbols without a match. We then 

eliminated all genes mapping to the X chromosome. Recall that we did not include the X 

chromosome in our GWAS meta-analysis (nor did any of the GWAS of anthropometric 

traits). Removing genes on the X chromosome is particularly important in our case because 

this chromosome is greatly enriched by ID genes. These processing steps produced a list of 

431 genes. 

 

Our lists of ASD and SCZ genes were derived from the information in Supplementary Tables 

1 and 2 of ref. 9. The authors of this study listed all genes found to contain a de novo 

mutation in ASD and SCZ probands participating in recently published exome-sequencing 

studies. We filtered these lists so as to include only genes whose mutations fall in the 

following categories of nonsynonymous sites: CODON-DELETION, CODON-INSERTION, SPLICE, 

FRAMESHIFT, MISSENSE, NONSENSE, and START-LOST. We then followed exactly the same 



 

 

procedure that we used to clean the list of ID genes. These processing steps produced lists 

consisting of 713 ASD and 646 SCZ genes respectively. 

 

As a negative control, we looked at the intersection of genes implicated in GWAS with genes 

containing sites where mutations are believed to cause disorders of abnormal skeletal growth 

(SKEL) such as Marfan syndrome. The list of SKEL genes was taken from Supplementary 

Table 9 of ref. 5; the GIANT Consortium investigators compiled this list by searching the 

Online Mendelian Inheritance in Man database with the keywords SHORT STATURE, 

OVERGROWTH, SKELETAL DYSPLASIA, and BRACHYDACTYLIC. Applying the same cleaning 

procedure described above led to a list of 232 genes. 

 

We used the odds ratio as the measure of overlap between the relevant sets of syndromic and 

DEPICT-nominated genes. At this step we excluded all genes not covered by DEPICT from 

the lists of syndromic genes. The set of genes populating the 2×2 tables in this analysis thus 

consisted of the 16,133 autosomal protein-coding genes covered by DEPICT. 

 

When we use the traits examined in other large-scale GWAS as a benchmark, the conceptual 

experiment is to examine how the association between syndromic and GWAS-implicated 

genes varies as we fix the sample size within a range (more or less between 225,000 and 

340,000 individuals) but vary the target phenotype of the GWAS. If the association between 

the GWAS phenotype and a particular syndromic disorder is strongest when the phenotype is 

EduYears, the claim for the biological significance of the association is substantiated.  

 

4.6.5 Finding Matches for Loci Defined by SNPs Reaching P < 5×10−8    

To perform our benchmarking exercise without relying on DEPICT’s nominations of genes, 

we retrieved the respective lists of independent strictly significant SNPs (P < 5×10−8) from 

the GWAS results of the four phenotypes under consideration. We subsequently used the tool 

SNPsnap (http://www.broadinstitute.org/mpg/snpsnap/)8 to obtain lists of genes contained 

within the locus of each SNP. By default, SNPsnap drops SNPs whose chromosomal 

coordinates cannot be identified and SNPs in the human leukocyte antigen (HLA) region. 

After the exclusion of SNPs not recognized by SNPsnap, we were left with 676 height SNPs 

(21 dropped), 94 BMI SNPs (3 dropped), 70 EduYears SNPs (4 dropped), and 47 WHR SNPs 

(2 dropped). We used SNPsnap’s default settings to define a locus (𝑟2 > 0.5) and the odds 

ratio as the measure of overlap between the set of syndromic genes and genes overlapping 

loci centered on strictly significant SNPs. When calculating odds ratios, we constrained each 

gene to contribute a single count even if it overlapped more than one locus. The set of genes 

populating the 2×2 tables in this analysis consisted of the 19,484 autosomal protein-coding 

genes covered by SNPsnap. 

 

We also used SNPsnap to test the significance of a given overlap between syndromic and 

GWAS-implicated genes. For each combination of GWAS phenotype and syndromic 

disorder, we started with the n lead SNPs identified by the GWAS that are also recognized by 

SNPsnap. We calculated the number of genes in each of the loci defined by these SNPs that 

appear in the relevant list of syndromic genes. (We allowed a given gene to contribute to the 

counts of more than one locus. If independent SNPs associated with a phenotype in a GWAS 

tend to cluster near a given syndromic gene, this phenomenon is clearly of biological 

importance.) We then randomly generated 2,000 sets of n SNPs, where the ith member of 

each set was selected to match the ith SNP taken forward from the given GWAS (i = 1, …, n) 

in certain respects. Procedurally, we used the 1000 Genomes European Phase 3 reference 

http://www.broadinstitute.org/mpg/snpsnap/


 

 

panel and the default SNPsnap matching criteria (MAF ± 0.05, gene density ± 50%, distance 

to nearest gene ± 50%, and number of LD buddies ± 50% using 𝑟2 > 0.5). For each set of 

matched SNPs generated under these settings, we calculated the difference between the 

vector of syndromic gene counts in the actual GWAS loci and the vector of counts in the 

matched loci. The mean of this difference vector can be interpreted as the average difference 

in syndromic genes per locus between the GWAS loci and their matches. We counted the 

number of these means falling below zero and divided the count by 2,000 to obtain the 

empirical one-sided P-value. 

 

Because functional regions of the genome differ systematically from biologically inert 

regions in properties such as gene and SNP density, the fact that EduYears-associated SNPs 

are the output of a GWAS disqualifies the unconstrained random selection of SNPs as an 

appropriate null model of randomness. A GWAS of any trait whatsoever is more likely to 

yield loci encompassing ID genes (say) than unconstrained random selection. Our matching 

procedure is therefore an attempt to generate random sets of SNPs resembling those likely to 

yielded by a GWAS or some other study of genome function. This attempt to use the focal 

GWAS itself to supply the values of the biologically relevant matching parameters might fail 

if the genetic architecture of the trait under consideration is unusual—for example, because 

the density of genes in the loci centered on the causal sites is even higher than what is found 

in a typical functional region. Nevertheless we note that the basic approach implemented in 

SNPsnap has been frequently employed; see ref. 8 for citations of relevant studies. Since the 

number of SNPs is constant across random realizations, the SNPsnap approach implicitly 

titrates the sample size of the hypothetical GWAS-like studies to yield a fixed number of 

significant hits. 

 

4.6.6 Results 

The intersections of DEPICT-nominated EduYears genes with the respective sets of genes 

implicated in ID, ASD, and SCZ are given in Extended Data Fig. 9c and Supplementary 

Table 4.1. The results of our analyses are given in Supplementary Table 4.6.1. 

 

Extended Data Fig. 9b displays the results of our primary analysis relying on DEPICT-

nominated genes. The odds ratio corresponding to the intersection between EduYears-

associated genes and ID genes (~4.2) is more than twice as large as when the GWAS 

phenotypes are anthropometric in nature. The trend for ASD is similar but less marked, 

whereas EduYears and SCZ genes do not seem to exhibit a biologically significant 

intersection. It is possible that de novo SNP mutations (as opposed to copy number variants10) 

tend not make a consistently signed joint contribution to cognitive performance and SCZ 

liability. Our null finding with respect to SCZ should not be taken as definitive, however, 

since it is our list of SCZ genes that likely contains the largest fraction of false positives. This 

list is not as well curated as the list of ID genes, and de novo SNP mutations increasing SCZ 

liability have not been confidently identified in subsequent studies.  

 

As a robustness check, we recalculated the ASD odds ratios using a list of ASD genes 

published after the initiation of our bioinformatic pipeline11. The authors of this exome-

sequencing study calculated an FDR associated with each gene in their ranked list, enabling 

the selection of a high-confidence subset. Taking forward only the 107 ASD genes satisfying 

FDR < 0.05, we found odds ratios of 5.31 for EduYears, 2.84 for BMI, 1.81 for height, and 0 

for WHR. Since this list is about 6 times smaller than our primary list of ASD genes drawn 

from ref. 9, the intersections are very small and thus do not lead to smooth changes in the 



 

 

corresponding odds ratios with size. For instance, the intersection of EduYears and the high-

confidence ASD set contains only SRPK2, QRICH1, TBR1, and BCL11A. Nevertheless it is 

reassuring that the latter three genes are also members of our primary ASD list.  

 

The intersections between the GWAS-implicated genes and the SKE genes exhibit a 

dramatically different pattern. The SKEL odds ratios for EduYears and BMI are both smaller 

than one. In contrast, genes implicated in GWAS of height and WHR show substantial 

overlap with genes where de novo mutations can lead to syndromic disorders of skeletal 

growth. The stark contrast between ID and SKEL genes in Extended Data Fig. 9b highlights 

the specific connection of ID to EduYears and suggests that de novo mutations at the relevant 

sites are responsible for severe disturbances of the biology underlying cognitive performance. 

 

The secondary analysis employing all genes in loci centered on lead SNPs (P < 5×10−8) 

produced broadly similar results (Supplementary Table 4.6.1). EduYears is again the trait 

whose GWAS-implicated genes are most likely to harbor sites where mutations are known or 

suspected to cause ID and ASD, and height and WHR are again the traits showing the tightest 

connections to genes where mutations can cause SKEL. The SNPsnap P-values track the 

relevant odds ratios closely. (The P-values are also influenced by the numbers of significant 

SNPs and putative syndromic genes. Note that if several independent SNPs are near the same 

syndromic gene, then it is possible in Supplementary Table 4.6.1 for a “top loci” odds ratio to 

be less than one and for the corresponding one-sided P-value to be less than 0.50.) In 

particular, the overlap of genes near EduYears lead SNPs with genes where de novo 

mutations have been linked to the syndromic disorders ID (P = 0.006), ASD (P < 0.001), and 

SCZ (P = 0.156) range from suggestive to highly significant. 
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4.7 Temporal Expression Pattern of Genes Prioritized by DEPICT 

 

4.7.1 Overview 

The expression level of a gene typically varies across time, partly depending on the extent to 

which the gene product is needed at a particular point in development. We investigated the 

variation in brain-specific expression levels of EduYears-associated genes (as prioritized by 

DEPICT) across time points ranging from early fetal stages to adulthood. We have previously 

applied our method to results from a GWAS of schizophrenia and found that genes prioritized 

for that disorder tend to be more highly expressed in the brain than non-prioritized genes 

throughout the lifespan—but particularly during postnatal development (Pers et al. in 

progress). In contrast, when we applied our method to the present GWAS of EduYears, we 

found that the prioritized genes tend to be more highly expressed in the brain throughout the 

lifespan but particularly during prenatal development. 

 

4.7.2 Background 

Genes exhibit variable expression levels throughout life. For instance, since few new neurons 

are generated from progenitor cells in human adults, one might expect the expression levels 

of genes involved in neurogenesis to be high during early developmental stages and then to 

decline. Conversely, one might expect genes whose expression within neurons is modulated 

by second messengers during episodes of learning and memory formation to remain highly 

expressed during adulthood. 

 

Previous studies have measured gene expression levels in a number of human brain regions at 

different stages ranging from early prenatal development (~9 weeks after conception) to 

adulthood (~20 to 60 years of age)1,2. Typically these studies use laser microdissection to 

isolate distinct brain regions in postmortem brain samples from clinically unremarkable 

donors. Afterwards, gene expression levels are quantified using microarray- or sequencing-

based technologies. Data from such studies can be consulted in order to determine whether 

the genes prioritized by GWAS results (e.g., by DEPICT) tend to be preferentially expressed 

at particular points in development. Any trend uncovered by such an analysis must be 

interpreted cautiously. For instance, the temporal expression pattern of the most highly 

prioritized genes found in early GWAS with smaller sample sizes may differ from those of 

genes found in later GWAS with larger sample sizes (which have the resolution to detect 

associations of smaller magnitude reflecting potentially distinct biology). Also, the gene 

expression data may be confounded by differences in RNA integrity between brain regions 

and factors related to the individual such as cause of death. Nevertheless elevated expression 

levels during a particular temporal window tentatively support the inference that 

developmental events occurring during that window play some role in producing the 

phenotypic variation observed at the time of assessment. 

 

4.7.3 Gene Expression Normalization and Analysis 

For previous work, Pers et al. downloaded normalized BrainSpan Developmental 

Transcriptome RNA-Seq data (see URLs; download date October 31, 2014). We further 

processed the RNA-Seq data by winsorizing all genes with more than 50 reads per kilobase 



 

 

of transcript per million reads (RPKM) to a value of 50 and transforming to log2(1+RPKM). 

In total 4,586 genes were affected by winsorizing (~2% of the expression values). 

 

The downloaded datasets contained measurements of each gene’s expression levels in 26 

different brain regions (primary auditory cortex, amygdaloid complex, cerebellum, and so on) 

at 12 developmental stages (prenatal, infancy, and so on). Supplementary Table 4.7.1 

provides each individual’s stage at death and donated brain regions. The developmental 

stages were defined using the BrainSpan Developmental Transcriptome technical white 

paper, release October 2013 v.5 (see the URLs listed at the end of this subsection). For each 

combination of individual donor and brain region, we computed the median expression level 

in log2(1+RPKM) of (1) all genes prioritized by DEPICT for EduYears and (2) all genes in 

the human genome captured in the dataset. In order to summarize the expression of 

prioritized genes across all regions, we then computed each individual’s mean of the regional 

median expression levels. The mean of this latter quantity over all individuals representing a 

given developmental stage was taken as the stage’s essential data point. The expression data 

and source code to compute the temporal expression profiles and carry out the accompanying 

statistical tests can be found at https://github.com/perslab/temporal-brain-expression. 

 

To assess whether DEPICT-prioritized genes were more highly expressed prenatally or 

postnatally, we used a paired t-test to calculate the significance of this contrast (the linear 

combination of stage means giving weight +1/6 to each of the prenatal stages and −1/6 to 

each of the postnatal stages). We performed Levene’s test of homogeneous variance across 

stages and could not reject this assumption. We therefore used a pooled estimate of the 

variance in the t-test. Although linear mixed models offer a potentially more powerful means 

of aggregating the data and testing any trend over time, we chose to proceed with our simpler 

method in accordance with the plotting of the data in Extended Data Fig. 9a.  

 

4.7.4 Results 

The 146 genes prioritized for EduYears (including those without gene symbols in 

Supplementary Table 4.1) exhibited higher expression levels during prenatal development 

(fold-change 1.36, P = 6.02×10−8). 

 

Extended Data Fig. 9a displays the time course of gene expression in finer detail. The red 

curve represents the average median expression levels of the DEPICT-prioritized EduYears 

genes as function of time, beginning with 8 weeks after conception and ending with 

adulthood (>20 years). (The induction of the head occurs about 4 weeks after conception in 

humans.) The error bars represent 95% confidence intervals based on the pooled estimate of 

the within-stage variance. For comparison, the black curve represents the average median 

expression levels of all genes, which by the nature of the normalization should remain close 

to zero. We can see that the prioritized genes exhibit above-background levels of expression 

in the brain at every point of development. Expression levels are highest very early in 

development, however, and then decline through birth and remain below the earlier levels 

throughout adulthood. Each of the gray curves represents expression of the prioritized genes 

in a specific brain region as a function of time, and we can see that most of them track the 

global trend. 

 

We have extensively tested and ruled out the possibility that DEPICT is biased toward the 

prioritization of genes that are highly expressed at particular time points (Pers et al. in 

progress). Moreover, a previous application of our method found that genes prioritized by 

https://github.com/perslab/temporal-brain-expression


 

 

DEPICT for schizophrenia exhibit higher levels of expression postnatally, which 

demonstrates that our result in the case of EduYears cannot easily be ascribed to an artifact.  

 

There is one potential confound that we are able to address with the available data. We can 

imagine that if EduYears causal genes are more highly expressed throughout life in a 

particular brain region that has been donated exclusively by individuals who died before 

birth, then the downward trend of the red curve in Extended Data Fig. 9a might be due to this 

confounding. However, the visual appearance of the gray curves in Extended Data Fig. 9a 

suggests that this type of confounding is not a concern, and we can formally support this 

impression by testing only those brain regions donated by individuals representing all 12 

developmental stages. There are 6 such regions—the amygdaloid complex, hippocampus, 

inferolateral temporal cortex, anterior cingulate (medial prefrontal) cortex, orbitofrontal 

cortex, and ventrolateral prefrontal cortex (Supplementary Table 4.7.1). It happens that these 

regions are known to subserve higher cognitive functions such as learning, memory, thinking, 

reasoning, decision making, and executive monitoring3.  

 

We inspected the detailed temporal trajectories of these 6 brain regions and found that each 

one resembles the red curve in Extended Data Fig. 9a. Because some developmental stages at 

this regional level are represented by a single donor, we tested the significance of the 

downward trend over time by permuting the stage labels and determining how often the 

higher mean expression level measured in the “prenatal” donors exceeds the difference 

actually observed. When tested individually, each of the 6 brain regions achieved an 

empirical one-sided P < 0.001.  

   

 

URLs 
BrainSpan Developmental Transcriptome gene expression data: 

http://www.brainspan.org/static/download.html 

 

BrainSpan Developmental Transcriptome technical white paper – stage definition: 
http://help.brain-map.org/display/devhumanbrain/Documentation  
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5 Polygenic Prediction 

We performed out-of-sample prediction using the cohorts STR and HRS as holdout samples. 

The score for each cohort was constructed using meta-analytic results from our EduYears 

sample with the cohort omitted.  

 

5.1 Methods 

We employed two different methods to construct the polygenic scores for STR and HRS, 

depending on the P-value threshold. First, for a range of threshold P-values—5×10−8, 5×10−7, 

5×10−6, 5×10−5, 5×10−4—we used the top EduYears-associated SNPs selected from a 

conditional-joint (COJO) analysis1,q conducted in the software GCTA2, using the estimates 

from a meta-analysis excluding STR and HRS, respectively. The results for the SNPs 

selected by GCTA-COJO at the P-threshold of 5×10−8, using HRS as a reference sample for 

LD estimation, are reported in Supplementary Table 5.1. The scores were constructed using 

PLINK3. 

 

Second, for the threshold P-value of 1, the effect sizes from the original meta-analysis were 

used as weights to construct the score (i.e., the GWAS coefficients that were estimated via 

univariate regression, rather than GCTA-COJO coefficients from multiple regression)r. At 

this threshold, we constructed two scores: one using all SNPs (both directly genotyped and 

imputed) and one using only the directly genotyped SNPs. (We did not originally intend to 

construct a score using only the directly genotyped SNPs, but post hoc analyses revealed that 

it had greater explanatory power.) The number of SNPs included in the score at each P-value 

threshold in each analysis are shown in Supplementary Table 5.2. 

 

The genotypes of all the individuals have been imputed to the 1000G reference panel. Using 

GCTA2 and all the common variants on HapMap3, we estimated ten principal components 

(PCs) in each of the STR and HRS cohorts. Note that we computed the HRS PCs ourselves 

using the European-only subsample described above (rather than using those provided by the 

HRS).  

 

We followed two similar but distinct approaches to estimate the predictive power of all these 

polygenic scores in samples of unrelated individuals in the STR and the HRS. We prefer the 

first approach of estimating incremental R2, but we also report the second because it has been 

used in prior GWAS research. The two approaches also differ slightly in their samples due to 

different methods of dropping unrelated individuals.   

                                                 
q In the COJO analysis, SNPs are selected through a step-wise model selection procedure that finds a set of 

SNPs where each SNP meets some specified P-value threshold conditional on all of the other SNPs in the set, 

and no SNP can be added that meets the P-value threshold conditional on the SNPs in the selected set. Using a 

reference data set drawn from the same population, the coefficients that arise from this analysis may be thought 

of as approximately equal to what would be estimated if the selected model were directly estimated with 

individual-level data. 
r The COJO analysis only works when the number of analyzed SNPs is smaller than the number of individuals 

in the reference dataset because COJO involves inverting the variance-covariance matrix of the genotypes 

estimated from the reference data. When the number of SNPs in the analysis (which is all SNPs when the P-

value threshold is 1) is greater than the sample size, this inverse is not defined. 



 

 

Approach 1 

 

For the STR cohort, we randomly selected one sibling per family to include in the analysis 

(the HRS cohort is not family-based, so the individuals are unrelated). In the HRS, only the 

individuals of European ancestry, as reported in the HRS quality control documentation4, 

were included in the analyses. This left 10,810 and 8,641 individuals in the STR and HRS, 

respectively.  

 

For each score, we first regressed EduYears on sex, birth year, squared birth year, and the 

first 10 PCs. Then we estimated the same regression with the score as an additional covariate, 

and we calculated the incremental R2 from including the score in the regression. 

 

The results of this approach are shown in Supplementary Table 5.2. 

  

Approach 2 

 

For both the STR and the HRS cohorts, we selected samples of unrelated individuals based 

on the estimated genetic relatedness from common SNPs using a relatedness threshold of 

0.05. In the HRS, only the samples of European ancestry, as reported the HRS quality control 

documentation4, were included in the analyses. This left 9,339 and 8,538 unrelated 

individuals in the STR and HRS, respectively.  

 

The dependent variable was constructed as follows: for each cohort and sex, we regressed 

EduYears on age and standardized the resulting residuals (so they have mean 0 and variance 

1).  

 

We regressed the standardized EduYears residuals on the residuals resulting from regressing 

the polygenic score on the first 10 PCs.  

 

The results of this approach are reported in Supplementary Table 5.2. 

 

5.2 Discussion 

The results from both approaches show that prediction accuracy increases as more SNPs are 

used to construct the score, with the maximum predictive power achieved when using all the 

genotyped SNPs (with Approach 1). In that case, the weighted average across the two cohorts 

of the incremental R2 is ~3.85%. Interestingly, the score based on only the genotyped SNPs 

explains a larger share of the variance than the score based on all SNPs in both the STR and 

the HRS cohorts, although the differences are not significant. (The standard errors and 

confidence intervals for the incremental R2 estimates were estimated with the bootstrap 

method, with 1,000 bootstrap samples.)  

 

A possible reason for this difference is that the set of all SNPs contains a larger share of SNPs 

with low minor allele frequencies (MAF) than the set of genotyped SNPs. For example, in the 

HRS dataset, 11.6% of the SNPs in the set of all SNPs have MAF between 0.01 and 0.02, and 

16.4% have MAF between 0.02 and 0.05, versus 1.5% and 5.7%, respectively, for the set of 

genotyped SNPs. If the effect sizes of the low-MAF SNPs tend to be similar to those of the 

other SNPs, then the estimates of the former will be less precise relative to their explanatory 

power since the standard errors of estimates of effect sizes are larger for low-MAF SNPs. In 

that case, they will thus tend to add noise to the score based on all SNPs and to reduce its 



 

 

explanatory power. However, it is not clear whether the effect sizes of the low-MAF SNPs 

are generally similar to those of the other SNPs, and it is in fact often assumed that rare SNPs 

have relatively larger effect sizes (see, e.g., the LD Score regression framework5). 

Furthermore, given that the differences in the estimates of the incremental R2 are not 

significant, the differences could also simply be due to sampling variation. 

 

The magnitude of predictive power that we observe is less than one might have expected on 

the basis of statistical genetics calculations6 and GCTA-GREML estimates of “SNP 

heritability” from individual cohorts. Indeed, Rietveld et al. (2013)7 reported GCTA-GREML 

estimates of SNP heritability for each of two cohorts (STR and QIMR), and the mean 

estimate was 22.4%. Assuming that 22.4% is in fact the true SNP heritability, the calculations 

outlined in the SOM of Rietveld et al. (pp. 22-23) generate a prediction of R2 = 11.0% for a 

score constructed from the GWAS estimates of this paper and of R2 = 6.1% for a score 

constructed from the combined (discovery + replication cohorts, but excluding the validation 

cohorts) GWAS sample of N = ~117,000-119,000 in Rietveld et al.—substantially higher 

than the 3.85% that we achieve here (with the score based on all genotyped SNPs) and the 

2.2% Rietveld et al. achieved, respectively.  

 

These discrepancies between the scores’ predicted and estimated R2 may be due to the failure 

of some of the assumptions underlying the calculation of the predicted R2.  

 

An alternative (or additional) explanation is that the true SNP heritability for the GWAS 

sample pooled across cohorts is lower than 22.4%. That would be the case if the true GWAS 

coefficients differ across cohorts, perhaps due to heterogeneity in phenotype measurement or 

gene-by-environment interactions. If so, then a polygenic score constructed from the pooled 

GWAS sample would be expected to have lower predictive power in an individual cohort 

than implied by the calculations above. Based on that reasoning, the R2 of 2.2% observed by 

Rietveld et al. (2013) could be rationalized by assuming that the proportion of variance 

accounted for by common variants across the pooled Rietveld cohorts is only 12.7%6. (We 

obtain a similar estimate, 11.5% with a standard error of 0.45%, when we use LD Score 

regression5 to estimate the SNP heritability using our pooled-sample meta-analysis results 

from this paper, excluding deCODE and without GC. While we believe this estimate is based 

on cohort results without GC, it is biased downward if any cohort in fact applied GC.) If we 

assume that the 12.7% is valid also for the cohorts considered in this study, we would predict 

an R2 equal to 4.5%, somewhat higher than we observe in HRS and STR but much closer. 

However, the degree of correlation in coefficients across cohorts appears to be relatively high 

(Supplementary Table 1.10 reports estimates of the genetic correlation between selected 

cohorts and deCODE; although the correlation estimates vary a lot across cohorts, they tend 

to be large for the largest cohorts, and the weighted average is 0.76). We do not know 

whether a pooled-cohort SNP heritability of 12.7% or lower can be reconciled with the 

observed degree of correlation in coefficients across cohorts. 
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6 Mediation 

As reported above in Supplementary Information section 5, the polygenic score (PGS) for 

EduYears constructed from all SNPs (imputed and directly genotyped) is significantly 

associated with EduYears, with predictive power 𝑅2 ≈ 2.7% and 𝑅2 ≈ 3.8% in the Swedish 

Twin Registry and the Health and Retirement Study, respectively. To examine the channels 

that may underlie this association, we conduct mediation analyses with potential mediating 

variables that are measured in STR and HRS: cognitive function and several personality 

traits. 

 

Our earlier GWAS of EA1 provided evidence from STR that the association between the PGS 

and EA is mediated by cognitive performance. Here, we conduct a more powerful version of 

that analysis using the more predictive PGS made possible by the larger GWAS reported 

here. We also extend the earlier analysis by considering additional potential mediators, by 

including controls for potential confounding variables, by using an extended STR dataset 

(relative to the earlier paper), and by conducting the analyses in HRS in addition to STR.  

 

6.1 Theory and Methods 

We build on Baron and Kenny’s (1986)2 standard regression approach to mediation analysis, 

extending their framework to accommodate multiple mediating variables and covariates.  

We estimate the following population regression model:  

 

(1) 𝐸∗[𝑌|𝑋,𝑴, 𝑪] = 𝜃0 + 𝜃1𝑋 + 𝜽2
′ 𝑴 + 𝜽3

′ 𝑪 

𝐸∗[𝑀𝑘|𝑋, 𝑪] = 𝛽0𝑘 + 𝛽1𝑘𝑋 + 𝜷2𝑘
′ 𝑪          for each 𝑘 = 1…𝑚, 

 

where 𝐸∗[𝐴|𝐵] denotes the linear projection of A onto B, Y is the dependent variable of 

interest (in our case, EduYears), X is the independent variable (in our case, the PGS), 𝑴 =
[𝑀1, … ,𝑀𝑚] is a vector of mediating variables, and 𝑪 is a vector of covariates (throughout, 

we use bolded capitalized letters to denote vectors). Supplementary Table 6.1 illustrates the 

main pathways of interest in the model. According to the model, a change in X induces a 

change in 𝑀𝑘,  and a change in 𝑀𝑘 in turns induces a change in Y. It is in that sense that 

𝑴 = [𝑀1, … ,𝑀𝑚] mediates part of the relationship between X and Y. 

 

We can re-write model (1) in reduced form as a function of X and 𝐶̅ only: 

 

𝐸∗[𝑌|𝑋, 𝑪] = 𝐸∗[𝐸∗[𝑌|𝑋,𝑴, 𝑪]|𝑋, 𝑪] 
= 𝐸∗[𝑌|𝑋, 𝐸∗[𝑴|𝑋, 𝑪], 𝑪] 
= 𝜃0 + 𝜃1𝑋 + 𝜽2

′ 𝐸∗[𝑴|𝑋, 𝑪] + 𝜽3
′ 𝑪 

= 𝜃0 + 𝜃1𝑋 + [𝜃21(𝛽01 + 𝛽11𝑋 + 𝜷21
′ 𝑪) + ⋯+ 𝜃2𝑚(𝛽0𝑚 + 𝛽1𝑚𝑋 + 𝜷2𝑚

′ 𝑪)] + 𝜽3
′ 𝑪 

= (𝜃0 + 𝜃21𝛽01 + ⋯+ 𝜃2𝑚𝛽0𝑚) + (𝜃1 + 𝜃21𝛽11 + ⋯+ 𝜃2𝑚𝛽1𝑚)𝑋 + (𝜽3
′ + 𝜃21𝜷21 + ⋯

+ 𝜃2𝑚𝜷2𝑚)𝑪 
= 𝛾0 + 𝛾1𝑋 + 𝜸2

′ 𝑪, 
 

where 𝛾0 ≡ 𝜃0 + 𝜃21𝛽01 + ⋯+ 𝜃2𝑚𝛽0𝑚,  

𝛾1 ≡ 𝜃1 + 𝜃21𝛽11 + ⋯+ 𝜃2𝑚𝛽1𝑚,  

and 𝜸2
′ ≡ 𝜽3

′ + 𝜃21𝜷21 + ⋯+ 𝜃2𝑚𝜷2𝑚.  



 

 

 

We refer to 𝛾1 = (𝜃1 + 𝜽2
′ 𝜷1) as the total effect of X on Y, to 𝜃1 as the direct effect of X on 

Y, to 𝜽2
′ 𝜷1 = 𝜃21𝛽11 + ⋯+ 𝜃2𝑚𝛽1𝑚 as the total indirect effect, and to 𝜃2𝑘𝛽1𝑘 as the partial 

indirect effect due to variable 𝑀𝑘. The total effect is equal to the sum of the direct effect and 

the total indirect effect. The direct effect captures the extent to which Y changes when X 

increased by one unit, with 𝑴 held fixed. The total indirect effect captures the extent to 

which Y changes when X is held fixed but the mediating variables are changed to the levels 

they would have attained had X increased by one unit; it quantifies the part of the total effect 

mediated by 𝑴.  

 

We wish to test: 

 

 𝐻0: 𝜃1 = 0 (direct effect: Does X have a direct effect on Y after controlling for 𝑴?); 

 𝐻0
′ : 𝜽2

′ 𝜷1 = 0 (total indirect effect: Does 𝑴 mediate part of the effect of X on Y?); and 

 𝐻0,𝑘
′′ : 𝜃2𝑘𝛽1𝑘 = 0, 𝑘 = 1…𝑚 (partial indirect effects: For each k, does 𝑀𝑘 mediate the 

effect of X on Y?). 

 

6.2 Caveats 

We emphasize that any conclusion drawn from these hypothesis tests is contingent on model 

(1) being correctly specified. (For a broader discussion of conceptual and identification issues 

in mediation analysis, see VanderWeele and Vansteelandt, 20093.) Among other assumptions, 

the model posits that all effects are linear and that there are no interactions between 𝑴 and X. 

Crucially, the model also assumes that (i) any observed correlation between X and 𝑴 (after 

controlling for 𝑪) is due to a causal effect of X on 𝑴, and (ii) any observed correlation 

between 𝑴 and Y (after controlling for 𝑪 and 𝑿) is due to a causal effect of 𝑴 on Y, and not 

the other way around. In the analyses below, (i) is plausible (𝑋 is the PGS of educational 

attainment and is determined at conception), but (ii) is unlikely to always hold: many of the 

mediating variables were measured after the realization of educational attainment Y, so 

reverse causality is a possibility. To help mitigate this latter concern, we consider only 

mediating variables that are known to be relatively stable through life. 

 

With these caveats in mind, below we estimate models in which X is the PGS for EduYears 

(hereafter, simply PGS), Y is educational attainment (EduYears), and 𝑴 contains a variable 

for cognitive performance and variables that measure personality traits. The analyses control 

for birth year and, where applicable, also gender. 

 

6.3 Standard Errors for Indirect Effects 

The standard errors of the direct effects are delivered directly from the regression output. To 

obtain the standard errors of the indirect effects, we use the delta method. Define 

𝑓(𝜽2; 𝜷1) ≡ 𝜽2
′ 𝜷1. Applying the delta method,  

 

𝑉𝑎𝑟̂(𝜽̂2
′ 𝜷̂1) = 𝑉𝑎𝑟̂ (𝑓(𝜽̂2; 𝜷̂1)) ≈  

𝜕𝑓(𝜽̂2; 𝜷̂1)
′

𝜕([𝜽2; 𝜷1])
𝑉𝑎𝑟̂(𝜽̂2; 𝜷̂1)

𝜕𝑓(𝜽̂2; 𝜷̂1)

𝜕([𝜽2; 𝜷1])
 



 

 

= [𝛽̂̅1; 𝜃̂̅2]
′

(
𝑉𝑎𝑟̂ (𝜃̂̅2) 0

0 𝑉𝑎𝑟̂ (𝛽̂̅1)
) [𝛽̂̅1; 𝜃̂̅2] 

= 𝜷̂1
′ 𝑉𝑎𝑟̂(𝜽̂2)𝜷̂1 + 𝜽̂2

′ 𝑉𝑎𝑟̂(𝜷̂1)𝜽̂2. 
 

The standard error is the square root of this quantity. 

 

6.4 Data 

We conduct mediation analyses based on this framework in two separate samples: the 

Swedish Twin Registry (STR) and the Health and Retirement Study (HRS). Both analyses 

examine the extent to which cognitive performance and a set of personality variables mediate 

the effect of PGS on EduYears.  

 

The Swedish Twin Registry (STR) is a large, population-based twin registry4. 14,726 

individuals born between 1911 and 1958, including slightly more than 7,000 males, were 

successfully genotyped as part of the TwinGene project. We conduct the analysis in the 

males-only subsample because data for cognitive performance, which comes from 

conscription records, are available only for males. 

 

We use data from all males who have been successfully genotyped. Information on the sex of 

the participants is from the pedigree file. The participant’s birth year is from the SALT 

Questionnaire Administration Data. Educational attainment information is from the 2005 data 

of Statistics Sweden and transformed into the EduYears variable using the ISCED scale. In 

cases where the education level from the 2005 data is missing, the level from the 1990 data is 

used.  

 

We use three mediating variables from the STR: cognitive performance, Rotter locus of 

control, and behavioral inhibition. For cognitive performance, men in the sample were 

matched to conscription data provided by the Military Archives of Sweden. Men were 

required by law to participate in military conscription around the age of 18. We use the 

stanine scores of four subtests of logical, verbal, spatial, and technical ability. Following 

Rietveld et al. (2014)5, we use the first principal component of these four stanine scores as the 

measure of cognitive performance. The two personality variables come from the SALTY 

survey, which was conducted between 2008 and 2010. As we discuss further below, the 

personality variables were measured long after individuals completed their education, thus 

raising concerns of reverse causality. The locus of control scale classifies individuals along a 

single dimension capturing the degree to which they feel they control the outcomes of events. 

The variable is a sum score, constructed from a questionnaire consisting of 12 questions. This 

score is coded such that a higher value corresponds to greater belief in one’s own 

responsibility for one’s fate. Behavioral inhibition is a subjective measure designed to capture 

how an individual responds to novel social situations. The behavioral inhibition variable is a 

sum score, constructed from a questionnaire consisting of 16 questions regarding inhibition. 

The scores are coded such that a higher value corresponds to more inhibition.  

 

The Health and Retirement Study (HRS) is a longitudinal panel study that surveys a 

representative sample of approximately 20,000 Americans over the age of 50 every two 

years6 (http://hrsonline.isr.umich.edu/). All individuals were born between 1900 and 1974, 

with more than 95% born in 1953 or earlier. DNA samples of a subsample of the HRS 

http://hrsonline.isr.umich.edu/


 

 

participants have been collected between 2006 and 2008. As recommended in the HRS 

documentation, we restrict the analysis to 8,652 unrelated individuals of European ancestry to 

reduce confounding by ethnicity and close relatedness.  

 

All variables, except for the Big Five personality traits, are retrieved from the RandHRS 

public dataset, version L. The EduYears variable is based on the highest degree attained. In 

cases where degree data are missing, we use self-reported years of education.  

 

We use six mediating variables from the HRS: cognitive performance and a variable for each 

of the Big Five personality traits (Agreeableness, Neuroticism, Extraversion, Conscientious, 

Openness to Experience). In this dataset, all six mediating variables were measured long after 

education was completed, raising concerns of reverse causality, as we discuss below. The 

cognition measure is the average of measures from waves 3-10. In each of these waves, the 

cognition measure is a sum score of immediate and delayed word recall tasks, as well as 

counting, naming, and vocabulary tasks. The Big Five personality variables are the average of 

the personality measures in the RandHRS FAT files from the years 2006, 2008, and 2010. 

These measures are in turn based on 26 items in the 2006 and 2008 waves and 31 items in the 

2010 wave. 

 

For both STR and HRS, we used the polygenic score constructed using all SNPs (imputed as 

well as directly genotyped) as our PGS variable. Supplementary Information section 5 

provides more details on how the polygenic scores were constructed. We standardized PGS 

as well as all mediating variables for the analysis. We present summary statistics for all 

variables used in these analyses in Supplementary Table 6.2. 

 

6.5 Results 

The results are reported in Supplementary Tables 6.3 and 6.4. In both the STR and the HRS, 

cognitive performance significantly mediates the effect of PGS on EduYears; in the HRS, 

Openness to Experience is also a significant mediator. The indirect effects for the other 

mediating variables are not significants. 

 

The results for cognitive performance are similar across STR and HRS. In both datasets, a 

one-standard deviation increase in PGS is associated with ~0.6-0.7 more years of education, 

and a one-standard deviation increase in cognitive performance is associated with ~0.15 more 

years of education. In both datasets, the direct effect (𝜃1) of PGS on EduYears is ~0.3-0.4 

and the total indirect effect (𝜷1𝜽2) is ~0.19-0.31. This implies that a one-standard-deviation 

increase in PGS is associated with ~0.3-0.4 more years of education, keeping the mediating 

variables constant, and that changing the mediating variables to the levels they would have 

attained had PGS increased by one standard deviation (but keeping PGS fixed) increases 

years of education by ~0.19-0.31 years. Lastly, in both datasets, the partial indirect effect 

(𝜃21𝛽11) of cognitive performance is large and very significant: the estimates are equal to 

0.29 and 0.14—or 42% and 23% of the total effect (𝛾1)—in STR and HRS, respectively. 

 

                                                 
s In STR, the indirect effects of locus of control and behavioral inhibition are significant, but only at the 10% level; in HRS, 

the indirect effect for conscientiousness is significant, but only at the 5% level. These P-values do not account for the 

multiple hypotheses we test, and these associations would not remain significant after correction for multiple hypotheses 

testing, so we ignore them in the remainder of this discussion. 



 

 

The results also suggest that a one-standard deviation increase in Openness to Experience is 

associated with ~0.06 more years of education, and the estimated partial indirect effect for 

Openness to Experience is equal to 0.04—or 7% of the total effect (𝛾1). 

 

We note that the total effect (𝛾1) is slightly different from the sum of the direct effect (𝜃1) and 

the total indirect effect (𝜷1𝜽2) because there are differences in the sets of observations used 

in the various regressions due to missing data. 

 

As noted above, an important caveat to these results is the potential concern of reverse 

causality. For instance, it is possible that PGS impacts EduYears independently of Openness 

to Experience or that EduYears also impacts Openness to Experience, in addition to or 

instead of the other way around. 

 

In the STR results, reverse causality is unlikely to be much of a problem because many 

individuals completed their education at age 18 or later, and thus EduYears was determined 

after cognitive performance was measured. As a robustness check, we repeated the mediation 

analysis with the STR data after dropping individuals who completed less than 13 years of 

education—i.e., dropping those who finished their education prior to taking the cognitive 

performance tests. Reassuringly, we continue to find that cognitive performance is a strongly 

significant mediating variable. 

 

Our result that cognitive performance mediates the relationship between PGS and EduYears 

reinforces our results with the polygenic scores from the earlier EA GWAS1. Our result that 

Openness to Experience is also a significant mediating variable is consistent with the 

literature on personality and educational attainment. Openness to Experience is often defined 

by two factors emphasizing distinct types of experience, internal (aesthetics, fantasy, 

feelings) and external (actions, ideas, values), and the latter has been found to be correlated 

with academic performance7,8.  
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7 Gene-environment Interactions 

7.1 Introduction 

Previous twin-based research has found that genetic effects on education vary across 

environmental contexts1,2, but few studies have examined interactions with directly measured 

EA-associated genotypes. Here, we provide an exploratory analysis of how the predictive 

power of our all-SNPs (including both imputed and directly genotyped SNPs) score varies by 

birth cohort in the Swedish Twins Registry (STR, birth year range 1929–1958). These 

cohorts made educational decisions in substantially different environments as Swedish 

institutions, norms and policy evolved over the course of the twentieth century, and hence 

changes in the effects of the PGS may reflect interactions with these environmental changes. 

Our cohort-based strategy for studying gene-by-environment (G×E) interactions is in the 

spirit of Rosenquist et al. (2015)3, who found that the strength of the well-known genetic 

association with body mass index varied by birth cohort. 

7.2 Cohort Analysis 

In our analyses, we divide our sample into six groups based on their year of birth. Each group 

spans five birth years, with the oldest spanning 1929-1933 and the youngest spanning 1954-

1958. Within each group, we separately estimate the following regression: 

𝐸𝑑𝑢𝑌𝑒𝑎𝑟𝑠𝑖 = 𝛽0 + 𝛽1𝑃𝐺𝑆𝑖 + 𝛽2𝑆𝑒𝑥𝑖 + 𝜇𝑖
𝑏 + 𝜇𝑖

𝑏,𝑚𝑎𝑙𝑒 + ∑𝛽𝑗
𝑝𝑐𝑃𝐶𝑖𝑗

20

𝑗=1

+ 𝜀𝑖  (1) 

where 𝑖 indexes individuals and 𝑗 indexes principal components of the genetic data. We use a 

PGS standardized to have mean 0 and standard deviation 1 based on the GWAS meta-

analysis results excluding the STR. Since the STR was genotyped with two arrays 

(Supplementary Table 1.4), a natural concern is the possibility of batch effects that might 

drive differences in the PGS score (or its correlation with EduYears) across the two waves. 

We therefore only include in our all-SNP score SNPs with minor allele frequency above 1% 

and whose imputation accuracy exceeds 95% in both samples. This restriction does not 

meaningfully affect the predictive power of the PGS: we continue to find R2 ≈ 2.6% in the 

full STR sample with this revised version of the PGS. In addition to the PGS, we control for 

sex, a vector of birth-year effects (𝜇𝑖
𝑏), interactions between sex and birth-year effects 

(𝜇𝑖
𝑏,𝑚𝑎𝑙𝑒

) and the first 20 principal components of the genetic data. 

Supplementary Table 7.1 reports the estimated coefficient on PGS from each of these 

regressions. The results suggest that the association between the PGS and EduYears is 

decreasing across the cohorts. The coefficient estimate for those born in the late 1950s is less 

than 60 percent of the size of the corresponding estimate for those born in the early 1930s. 

This difference in effect size between the oldest and youngest cohorts is statistically 

significant: in a regression specification in which the PGS is interacted with separate 

indicators for the birth-year groups defined above and the oldest cohort is used as the omitted 

category, the interaction between the PGS and the youngest cohort has P-value 0.004. We 

also pool data on all cohorts and estimate an equation that includes a linear interaction 

between birth year (BirthYr, treated as a continuous variable) and the PGS: 



 

 

𝐸𝑑𝑢𝑌𝑒𝑎𝑟𝑠𝑖 = 𝛽0 + 𝛽1𝑃𝐺𝑆𝑖 + 𝛽1𝑎𝑃𝐺𝑆𝑖 × 𝐵𝑖𝑟𝑡ℎ𝑌𝑟𝑖 + 𝛽2𝑆𝑒𝑥𝑖 + 𝜇𝑖
𝑏 + 𝜇𝑖

𝑏,𝑚𝑎𝑙𝑒 + ∑ 𝛽𝑗
𝑝𝑐

𝑃𝐶𝑖𝑗

20

𝑗=1

+ 𝜀𝑖   (2) 

Column 7 of Supplementary Table 7.1 reports the estimated coefficient on PGS and the 

interaction between the PGS and BirthYr. To facilitate interpretation, the BirthYr variable is 

recoded to the 0-1 range, where 0 is equal to 1929 and 1 is equal to 1958. The interaction 

term is negative, statistically significant (P = 0.004), and implies that the effect of the PGS 

for the oldest cohort in the sample (born in 1929) is almost twice as large as the effect among 

those born in 1958.  

We also report the incremental R2 associated with the PGS for the specifications in 

Supplementary Table 7.1. In the younger cohorts, the distribution in education is compressed 

and hence has smaller variance, and the PGS explains a smaller (yet non-trivial) share of the 

variance than in the older cohorts. However, the decline in R2 is less pronounced than the 

decline of the regression coefficient. 

7.3 Ascertainment Bias 

A plausible concern is that the effects we observe could be explained by non-trivial 

ascertainment bias (also called sample-selection effects) due to differential mortality by 

education and the PGS score. Since individuals had to survive into the 2000s in order to be 

genotyped, the older birth cohorts in our analysis include individuals who lived longer on 

average than their cohort peers. If individuals with low values of the PGS and high 

educational attainment (or high values of the PGS and low attainment) faced higher mortality 

rates, then we could be finding a larger relationship between the PGS and EduYears in these 

cohorts because of differential mortality. 

We believe this scenario is unlikely. A large literature finds that education is positively 

associated with longevity4. Thus, it seems plausible that the PGS exerts a positive effect on 

longevity (independent of education). In that case, individuals with low educational 

attainment and low values of the PGS would face the highest mortality rates in our 

population. In that case, ascertainment bias would work to attenuate the relationship between 

the PGS and EduYears. The bias would be greater for the older cohorts, causing us to 

underestimate the decline in the importance of genetic factors. 

7.4 Discussion 

The Swedish twin cohorts we study grew up during a period in which the Swedish schooling 

system underwent dramatic changes. Here, we describe some of these changes, provide 

descriptive analyses of how their timing relates to the falling predictive power of the score, 

and compare our results to those in the previous literature. 

Sweden’s most important reform during the period of study was introduced in the 1950s and 

1960s when, like many other European countries, a new comprehensive schooling system 

was put in place. The main components of this reform were an extension of mandatory 

schooling from seven to nine years, elimination of the lower level in secondary school, and 

postponement of tracking from around 10 years of age until the age of 16. The Swedish 

comprehensive school reform was gradually rolled out across the country’s municipalities 



 

 

between 1949 and 1962 as part of an extensive evaluation program. Thus, for an extended 

period of time, pupils belonging to the same age cohort but living in different municipalities, 

and pupils living in the same municipality but from adjacent age cohorts, were assigned to 

different school systems5. The effects of the reform have been evaluated in a number of 

papers. One striking and robust finding is that the reform had a positive impact on the adult 

earnings of children from low-SES households6. 

Another set of reforms sought to increase equality of outcomes and opportunity by increasing 

the availability of high schools, colleges, and universities. The expansion of the non-

compulsory school system in Sweden gained momentum in the first decades of the twentieth 

century. The increasing geographic spread of lower secondary schools halted in the 1940s as 

the comprehensive school reform made this level of schooling saturated, whereas the 

expansion in the number of upper secondary schools continued well into the 1980s. 

Additionally, the availability of higher education increased sharply as new colleges and 

universities opened, first in the mid-1960s, and later following a major educational reform in 

19776,7. 

The lower panel of Supplementary Table 7.1 presents some descriptive statistics relating the 

evolution of Swedish education reforms to the declining role of the PGS. The first row in the 

lower panel presents the share of pupils in each birth-cohort group that was exposed to the 

comprehensive school reformt. The oldest cohort that was exposed to the reform program was 

born in 1938 (and started the fifth grade in 1949). From a modest start, where only a handful 

of municipalities were selected for the first year of assessment (1949/1950), the number of 

municipalities joining the evaluation program grew steadily. The youngest cohort in which 

some pupils still attended the old school system was born in 1955 (i.e., they started school in 

1962 when the parliament decided to permanently introduce the nine-year comprehensive 

school). 

The following three rows report average distance between the individual’s home and nearest 

(i) lower secondary school, (ii) upper secondary school, and (iii) college or university. These 

indicators are based on recently collected data that have not previously been usedu. We note 

several features of these data. First, the average distance to secondary schools and colleges 

and universities decreased significantly over the time period during which the individuals in 

the STR sample came of school age. Second, the initiation of the comprehensive school 

reform signaled the gradual dismantling of the old system with a lower secondary stage. 

Third, as discussed above, the expansion of the number of lower secondary schools preceded 

the expansion of upper secondary schools and, later, colleges and universitiesv. 

                                                 
t To construct a reform-status indicator for each individual in our sample, we use information on birth municipality for those 

born 1938 to 1942 as a proxy for home municipality when aged 13. For those born during 1943 to 1958, we instead use 

home municipality according to the census in 1960. We are grateful to Helena Holmlund for sharing the data and code used 

for creating this indicator5. 

 uThe distance measures are constructed using information about the birth parish of the individuals in the STR sample in 

combination with data on the presence and exact location of lower secondary schools, upper secondary schools, and 

colleges/universities in each year from 1905 to 2000 across the approximately 2,500 parishes in Sweden. To create the 

distance measures, we make the following assumptions about the individuals: (i) the individuals start lower secondary school 

at age 13, secondary school at age 16, and college/university at age 20; (ii) the birth parish is the same as the residential 

parish when aged 13, 16, and 20; and (iii) all individuals in a parish are assumed to live at the location of the parish church. 

Given these assumptions, the lower secondary school distance score for individual i born in year t is defined as the distance 

between the location of the birth parish church and the location of the nearest lower secondary school in year t+13. The 

distance scores for upper secondary school and college/university are defined analogously. 
v Due to the use of birth parish as the basis for the distance measures, there is an artificial increase in the average distance to 

the nearest school for individuals born 1947 and later. Until 1946, birth parish is defined as the parish in which an individual 

is born in the Swedish registers. Children born from 1947 onward were instead assigned the mother’s residential parish as 



 

 

Extended Data Fig. 10 provides a graphical illustration of the timing of the school reforms 

and estimated impact of the PGS. The solid line in each graph displays the regression 

coefficients from five-year rolling regressions of EduYears on the PGS (left axis in each 

panel), with the shaded area showing the 95% confidence intervals. The dashed lines show 

the share of individuals not affected by the comprehensive school reform (upper-left graph, 

right axis) and the average distance to nearest junior high school (upper right-graph, right 

axis), nearest high school (lower-left graph, right axis), and nearest college/university (lower-

right graph, right axis). Although these results may be relevant for understanding the falling 

predictive power of the score, we caution that there are myriads of mechanisms that could 

organize the data equally well.  

A recent meta-analysis of twins from ten different countries and whose birth years span over 

a century found clear evidence that the heritability of EA varies by birth cohort and country.1 

The declining predictive power we find is seemingly at odds with birth-cohort effects on 

heritability previously reported for Norway2 and the overall tendency observed in the recent 

meta-analysis of twins1. Resolving the causes of this apparent discrepancy is beyond the 

scope of our study, but below we propose some hypotheses and some potential ways to 

investigate them. 

First, the R2 from a PGS is a fundamentally different estimand than the h2 of a twin study, 

which measures the proportion of variance explained by genetic factors as a whole. In 

principle, the two need not evolve similarly over time. Even if genetic factors as a whole are 

similarly important across STR birth cohorts, different genetic factors could matter for 

different birth cohorts. The PGS is constructed using weights obtained by meta-analyzing a 

heterogeneous set of cohorts. If the discovery-sample weights are closer to the population 

weights in the older STR cohorts than the population weights in the younger STR cohorts, it 

would result the pattern of declining predictive power we observe in the data. Under this 

hypothesis, we expect the genetic correlation between our discovery sample (omitting STR 

cohorts) and the older STR cohort to be higher than the genetic correlation with the younger 

cohort. Unfortunately, the two cohorts are too small to allow a well-powered test of this 

hypothesis. 

Second, the divergent results could reflect differences between Sweden and Norway in the 

secular environmental changes that occurred during the period. The two countries started in 

significantly different economic conditions and experienced different growth trajectories over 

this period.  Sweden had a significantly higher level of GDP per capita in 1930 ($4238 vs. 

$3627, measured in 1990 US Dollars)8, but the gap narrowed substantially during our period 

of study. Additionally, Sweden and Norway faced different trends in educational attainment, 

partly due to differing policies. For example, whereas Sweden made seven years of schooling 

compulsory for children in 1936, Norway implemented such reforms much earlier. While 

educational attainment grew steadily in Sweden over the twentieth century, Norway followed 

a more erratic path9. To seriously explore the relevance of these differences for the declining 

explanatory power of the PGS, it would be necessary to develop a more formal theoretical 

framework that makes predictions about how these institutional factors impact the R2 of a 

PGS or h2 and then put those predictions to an empirical test. 

                                                                                                                                                        
birth parish. Since the number of mothers who gave birth at a maternity ward grew steadily during the first half of the 

twentieth century, and most maternity wards were located in city parishes with a high likelihood of also containing or being 

close to secondary schools (and, to a lesser extent, colleges and universities), the decrease in the distance to the nearest 

school is slightly but increasingly overstated until 1947. 



 

 

The exploratory analyses we have reported here serve two purposes. First, at a general level, 

our analyses provide some molecular-genetic evidence of treatment-effect heterogeneity by 

birth cohort. We do not think it is appropriate to make general inferences about how the PGS 

interacts with birth cohort from a study of a single country. Second, our analyses help lay a 

foundation for future, rigorous studies on G×E interactions. Despite enormous enthusiasm, 

progress in molecular G×E studies of behavioral traits has been disappointing10. There is now 

strong evidence that the false-positive rate in the G×E literature is high: systematic 

evaluations find that only about one in four positive findings replicate and that there is clear 

evidence of publication bias4. The editor of the field journal Behavior Genetics recently 

concluded that the G×E literature is “full of reports that have not stood up to rigorous 

replication”11. It is widely understood that a major cause of the disappointing replication 

record is that most studies have been dramatically underpowered10,12. The PGS used here may 

help mitigate this problem, as it has explanatory power at least an order of magnitude greater 

than that of single polymorphisms whose variation has been credibly linked to behavioral 

phenotypes. Therefore, the PGS we develop in this paper may prove to be valuable for 

follow-up studies examining in greater detail how, and ultimately why, different 

environmental factors amplify or dampen genetic effects. 
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GOYA (Genetics of Overweight Young Adults) - This study was conducted as part of the 

activities of the Danish Obesity Research Centre (DanORC, www.danorc.dk) and the MRC 

centre for Causal Analyses in Translational Epidemiology (MRC CAiTE), and the Gene-diet 

Interactions in Obesity project (GENDINOB, www.gendinob.dk). LP was supported by and 

the genotyping for GOYA was funded by the Wellcome Trust (WT 084762MA). LP was 

supported by a Medical Council New Investigator Award (MRC G0800582 to DME). We 

thank all the participants of the study. TSA was also funded by the GENDINOB project and 

acknowledges the same. External researchers who wish to obtain access to GOYA (male) 

data or EA2 results may contact Tarunveer Singh Ahluwalia (tarun.ahluwalia@dbac.dk or 

veertarun@gmail.com). 
 

GRAPHIC (Genetic Regulation of Arterial Pressure in Humans in the Community) – 

Recruitment and genotyping for the GRAPHIC cohort were funded by the British Heart 

Foundation (BHF). NJS holds a Chair funded by the BHF and is a UK National Institute for 

Health Research (NIHR) Senior Investigator. CPN is supported by the BHF. MDT holds a 

Medical Research Council Senior Clinical Fellowship (G0902313). LMH is supported by the 

NIHR Leicester Cardiovascular Biomedical Research Unit. External researchers who wish to 

obtain access to GRAPHIC data or EA2 results may contact Prof. Nilesh Samani 

(njs@le.ac.uk).  

 

Health 2000 – The Health 2000 Study was mainly funded from the budget of the National 

Institute for Health and Welfare (THL). Additional funding was received from the Finnish 

Centre for Pensions, the Social Insurance Institution of Finland, the Local Government 

Pensions Institution, the National Research and Development Centre for Welfare and Health, 

the Finnish Dental Association, the Finnish Dental Society, Statistics Finland, the Finnish 

Institute for Occupational Health, The Finnish Work Environment Fund, the UKK Institute 

for Health Promotion Research and the Occupational Safety and Health Fund of the State 

Sector. The data used for this study can be made available on request to the Health 2000/2011 

scientific committee according to the ethical and research guidelines 

(www.terveys2011.info/aineisto) as well as Finnish legislation. 

 

HBCS (Helsinki Birth Cohort Study) – We thank all study participants as well as everybody 

involved in the Helsinki Birth Cohort Study. Helsinki Birth Cohort Study has been supported 

by grants from the Academy of Finland, the Finnish Diabetes Research Society, Folkhälsan 

Research Foundation, Novo Nordisk Foundation, Finska Läkaresällskapet, Signe and Ane 

Gyllenberg Foundation, University of Helsinki, Ministry of Education, Ahokas Foundation, 

Emil Aaltonen Foundation. Researchers interested in using HBCS data must obtain approval 

from the Steering Committee of the Helsinki Birth Cohort Study. Researchers using the data 

are required to follow the terms in a number of clauses designed to ensure protection of 

privacy and compliance with relevant Finnish laws. For further information, contact Johan 

Eriksson (johan.eriksson@helsinki.fi). 
 

HCS (Hunter Community Study) – The authors would like to thank the men and women 

participating in the HCS as well as all the staff, investigators and collaborators who have 

supported or been involved in the project to date. The University of Newcastle provided $300 

000 from its Strategic Initiatives Fund, and $600 000 from the Gladys M Brawn Senior 

Research Fellowship scheme; the Vincent Fairfax Family Foundation, a private philanthropic 
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trust, provided $195 000; The Hunter Medical Research Institute provided media support 

during the initial recruitment of participants; and Dr Anne Crotty, Prof. Rodney Scott and 

Associate Prof. Levi provided financial support towards freezing costs for the long-term 

storage of participant blood samples. External researchers may request data access from Chris 

Oldmeadow, Elizabeth Holliday or John Attia by email. 

 

HNRS (Heinz Nixdorf Recall Study) – The Heinz Nixdorf Recall Study thank the Heinz 

Nixdorf Foundation (Germany), the German Federal Ministry of Research and Education and 

projects SI 236/8-1 and SI 236/9-1 from the German Research Council for the generous 

support of this study. We acknowledge the support of the Sarstedt AG & Co. (Nümbrecht, 

Germany) for laboratory equipment. The genotyping was partially supported by the German 

Federal Ministry of Education and Research (BMBF) through the Integrated Network 

IntegraMent (Integrated Understanding of Causes and Mechanisms in Mental Disorders), 

under the auspices of the e:Med Programme (grant 01ZX1314A). We are indebted to all 

study participants and to the dedicated personnel of the study centre of the Heinz Nixdorf 

Recall study. Advisory Board: Meinertz T, Hamburg, Germany (Chair); Bode C, Freiburg, 

Germany; de Feyter PJ, Rotterdam, Netherlands; Güntert B, Hall i.T., Austria; Gutzwiller F, 

Bern, Switzerland; Heinen H, Bonn, Germany; Hess O, Bern, Switzerland; Klein B, Essen, 

Germany; Löwel H, Neuherberg, Germany; Reiser M, Munich, Germany; Schwaiger M, 

Munich, Germany; Steinmüller C, Bonn, Germany; Theorell T, Stockholm, Sweden; Willich 

SN, Berlin, Germany. External researchers can send their inquiry to boerge.schmidt@uk-

essen.de to get access to the study results. 

 

HRS (Health and Retirement Study) – HRS is supported by the National Institute on Aging 

(NIA U01AG009740).  The genotyping was funded separately by the National Institute on 

Aging (RC2 AG036495, RC4 AG039029).  Our genotyping was conducted by the NIH 

Center for Inherited Disease Research (CIDR) at Johns Hopkins University.  Genotyping 

quality control and final preparation of the data were performed by the Genetics Coordinating 

Center at the University of Washington. Genotype data can be accessed via the database of 

Genotypes and Phenotypes (dbGaP, http://www.ncbi.nlm.nih.gov/gap, accession number 

phs000428.v1.p1). Researchers who wish to link genetic data with other HRS measures that 

are not in dbGaP, such as educational attainment, must apply for access from HRS.  See the 

HRS website (http://hrsonline.isr.umich.edu/gwas) for details. 

 

HYPERGENES - The European Union (FP7-HEALTH-F4-2007-201550-HYPEREGENS, 

HEALTH-2011.2.4.2-2-EU-MASCARA, HEALTH-F7-305507 HOMAGE and the European 

Research Council Advanced Researcher Grant-2011-294713-EPLORE). InterOmics project 

(PB05 MIUR-CNR Italian Flagship Project). The Fonds voor Wetenschappelijk Onderzoek 

Vlaanderen, Ministry of the Flemish Community, Brussels, Belgium (G.0881.13 and 

G.088013). External researchers can discuss access to the data from this study by contacting 

Daniele Cusi (daniele.cusi@unimi.it).  
 

INGI-CARL, INGI-FVG (Italian Network of Genetic Isolates—Carlantino, Friuli 

Venezia Giulia) – We would like to acknowledge the following funds: Italian Ministry of 

Health RC n.1/2014 Linea 3. Access to our data is usually available upon request. For more 

information, please contact Dragana Vuckovic (dragana.vuckovic@burlo.trieste.it). 
 

The KORA research platform (KORA, Cooperative Research in the Region of 

Augsburg) – KORA was initiated and financed by the Helmholtz Zentrum München - 

German Research Center for Environmental Health, which is funded by the German Federal 
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Ministry of Education and Research and by the State of Bavaria. Furthermore, KORA 

research was supported within the Munich Center of Health Sciences (MC Health), Ludwig-

Maximilians-Universität, as part of LMUinnovativ. External researchers can apply for KORA 

data or our EA2.0 results via our KORA.PASST project application self-service tool at 

https://helmholtz-muenchen.managed-otrs.com/otrs/customer.pl. 

 

LBC (Lothian Birth Cohort) – We thank the cohort participants and team members who 

contributed to these studies. Phenotype collection in the Lothian Birth Cohort 1921 was 

supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC), 

The Royal Society, and The Chief Scientist Office of the Scottish Government. Phenotype 

collection in the Lothian Birth Cohort 1936 was supported by Age UK (The Disconnected 

Mind project).  Genotyping of the cohorts was funded by the BBSRC. The work was 

undertaken by The University of Edinburgh Centre for Cognitive Ageing and Cognitive 

Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative 

(MR/K026992/1). Funding from the BBSRC and Medical Research Council (MRC) is 

gratefully acknowledged. The raw data collected in the course of our research with human 

participants is available upon request (please contact, by e-mail, Professor Ian Deary, at the 

University of Edinburgh, and ask for a ‘Lothian Birth Cohort Data Request Form’). The 

process is facilitated by a full-time Lothian Birth Cohort database manager. Such proposals, 

when approved, are conducted in collaboration with appropriate members of the Lothian 

Birth Cohort study team. 
 

LifeLines (LifeLines) – Expanded Banner or Group Author: Behrooz Z Alizadeh (1), Rudolf 

A de Boer (2), H Marike Boezen (1), Marcel Bruinenberg (3), Lude Franke (4), Pim van der 

Harst (2), Hans L Hillege (1,2), Melanie M van der Klauw (5), Gerjan Navis (6), Johan 

Ormel (7), Dirkje S Postma (8), Judith GM Rosmalen (7), Joris P Slaets (9), Harold Snieder 

(1), Ronald P Stolk (1), Bruce HR Wolffenbuttel (5), Cisca Wijmenga (4).                                                                                                                                                                                 

(1) Department of Epidemiology, University of Groningen, University Medical Center 

Groningen, The Netherlands 

(2) Department of Cardiology, University of Groningen, University Medical Center 

Groningen, The Netherlands 

(3) LifeLines Cohort Study, University of Groningen, University Medical Center Groningen, 

The Netherlands 

(4) Department of Genetics, University of Groningen, University Medical Center Groningen, 

The Netherlands 

(5) Department of Endocrinology, University of Groningen, University Medical Center 

Groningen, The Netherlands 

(6) Department of Internal Medicine, Division of Nephrology, University of Groningen, 

University Medical Center Groningen, The Netherlands 

(7) Interdisciplinary Center of Psychopathology of Emotion Regulation (ICPE), Department 

of Psychiatry, University of Groningen, University Medical Center Groningen, The 

Netherlands 

(8) Department of Pulmonology, University of Groningen, University Medical Center 

Groningen, The Netherlands 

(9) University Center for Geriatric Medicine, University of Groningen, University Medical 

Center Groningen, The Netherlands 

 

The LifeLines Cohort Study, and generation and management of GWAS genotype data for 

the LifeLines Cohort Study is supported by the Netherlands Organization of Scientific 

Research NWO (grant 175.010.2007.006), the Economic Structure Enhancing Fund (FES) of 
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the Dutch government, the Ministry of Economic Affairs, the Ministry of Education, Culture 

and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands 

Collaboration of Provinces (SNN), the Province of Groningen, University Medical Center 

Groningen, the University of Groningen, Dutch Kidney Foundation and Dutch Diabetes 

Research Foundation. We thank Behrooz Z. Alizadeh, Annemieke Boesjes, Marcel 

Bruinenberg, Noortje Festen, Pim van der Harst, Ilja Nolte, Lude Franke, Mitra 

Valimohammadi for their help in creating the GWAS database, and Rob Bieringa, Joost 

Keers, René Oostergo, Rosalie Visser, Judith Vonk for their work related to data-collection 

and validation. The authors are grateful to the study participants, the staff from the LifeLines 

Cohort Study and the contributing research centers delivering data to LifeLines and the 

participating general practitioners and pharmacists. All data and samples collected by 

LifeLines are available to scientific researchers worldwide. It is also possible to prospectively 

collect additional data and samples in a selected group of LifeLines participants in an add-in 

study. Researchers can apply for data, samples or an add-on study by filling in the application 

form for research and submitting the completed form through our data catalogue, together 

with a selection of the requested data. Please contact dr. Salome Scholtens at 

s.scholtens@umcg.nl, when you may need more specific information. 

 

MCTFR (The Minnesota Center for Twin and Family Research) – MCTFR was 

supported in part by USPHS Grants from the National Institute on Alcohol Abuse and 

Alcoholism (AA09367 and AA11886), the National Institute on Drug Abuse (DA05147, 

DA13240, and DA024417), and the National Institute on Mental Health (MH066140). 

William Iacono was supported in part by a grant from the National Institute on Drug Abuse 

(DA 036216). GWAS and phenotypic data for MCTFR subjects who provided consent to 

place their data in a public repository are deposited into the database of Genotypes and 

Phenotypes (dbGaP, www.ncbi.nlm.nih.gov/gap) under phs000620. For further information, 

please contact Matt McGue (mcgue001@umn.edu). 

 

MGS (Molecular Genetics of Schizophrenia) - We thank the study participants of the 

Molecular Genetics of Schizophrenia (MGS). MGS was mainly supported by 

R01MH059571, R01MH081800, and U01MH079469 (to P.V.G.); and other NIH grants for 

other MGS sites (R01MH067257 to N.G.B., R01MH059588 to B.J.M., R01MH059565 to 

R.F., R01MH059587 to F.A., R01MH060870 to W.F.B., R01MH059566 to D.W.B., 

R01MH059586 to J.M.S., R01MH061675 to D.F.L., R01MH060879 to C.R.C., 

U01MH046276 to C.R.C., and U01MH079470 to D.F.L). GWAS and phenotypic data for all 

MGS subjects are deposited into the database of Genotypes and Phenotypes 

(dbGaP, www.ncbi.nlm.nih.gov/gap) under phs000021 and phs000167.  

 

MoBa (Mother and Child Cohort of NIPH) - This work was supported by grants from the 

Norwegian Research Council (FUGE 183220/S10, FRIMEDKLI-05 ES236011), Swedish 

Medical Society (SLS 2008-21198), Jane and Dan Olsson Foundations and Swedish 

government grants to researchers in the public health service (ALFGBG-2863, ALFGBG-

11522, ALFGBG-426411) Sahlgrenska University Hospital, Gothenburg, Sweden, and the 

European Community’s Seventh Framework Programme (FP7/2007-2013), grant agreement 

HEALTH-F4-2007-201413. The Norwegian Mother and Child Cohort Study was also 

supported by the Norwegian Ministry of Health and the Ministry of Education and Research, 

NIH/NIEHS (contract no N01-ES-75558), NIH/NINDS (grant no.1 UO1 NS 047537-01 and 

grant no.2 UO1 NS 047537-06A1), and the Norwegian Research Council/FUGE (grant no. 

151918/S10). We are grateful to all the participating families in Norway who take part in this 
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ongoing cohort study. For further information, contact the principal investigator of MoBa, 

Per Magnus (per.magnus@fhi.no). 

 

NESDA (Netherlands Study of Depression and Anxiety) – We acknowledge financial 

support from the Geestkracht program of ZonMW (10-000-1002); matching funds from 

universities and mental health care institutes involved in NESDA; Center for Medical 

Systems Biology (NWO Genomics), Neuroscience Campus Amsterdam. Genotyping was 

funded by the Genetic Association Information Network (GAIN) of the Foundation for the 

US National Institutes of Health. Genotype data were obtained from dbGaP 

(http://www.ncbi.nlm.nih.gov/dbgap, accession number phs000020.v1.p1). Researchers 

interested in using the NESDA data must obtain approval from the NESDA study group. 

Researchers using the data are required to follow the signed terms of a research agreement 

between them and the NESDA investigators. Note that individual level data cannot be 

released to external investigators, only summary GWAS results. For further information 

contact B.W.J.H. Penninx (b.penninx@vumc.nl). 
 

NFBC1966 (Northern Finland Birth Cohorts (1966 Cohort)) – We thank Professor Paula 

Rantakallio (launch of NFBC1966 and initial data collection), Ms Sarianna Vaara (data 

collection), Ms Tuula Ylitalo (administration), Mr Markku Koiranen (data management), Ms 

Outi Tornwall and Ms Minttu Jussila (DNA biobanking). This work was supported by the 

Academy of Finland [project grants 104781, 120315, 129418, Center of Excellence in 

Complex Disease Genetics and Public Health Challenges Research Program (SALVE)], 

University Hospital Oulu, Biocenter, University of Oulu, Finland (75617), the European 

Commission [EURO-BLCS, Framework 5 award QLG1-CT-2000-01643], The National 

Heart, Lung and Blood Institute [5R01HL087679-02] through the SNP Typing for 

Association with Multiple Phenotypes from Existing Epidemiologic Data (STAMPEED) 

program [1RL1MH083268-01], The National Institute of Health/The National Institute of 

Mental Health [5R01MH63706:02], European Network of Genomic and Genetic 

Epidemiology (ENGAGE) project and grant agreement [HEALTH-F4-2007-201413], and the 

Medical Research Council, UK [G0500539, G0600705, PrevMetSyn/ Public Health 

Challenges Research Program (SALVE)]. Researchers interested in using NFBC1966 data 

must obtain approval from the Ethical Committee of Northern Ostrobothnia Hospital District 

and from the Data and Publication Committee of the Northern Finland Birth Cohorts. 

Researchers using the data are required to follow The Declaration of Helsinki and rules of 

practice containing a number of clauses designed to ensure protection of privacy and 

compliance with relevant laws. For further information, contact Marjo-Riitta Jarvelin 

(m.jarvelin@imperial.ac.uk). 

 

NBS (The Nijmegen Biomedical Study) – NBS is a population-based survey conducted at 

the Department for Health Evidence, and the Department of Laboratory Medicine of the 

Radboud university medical center. Principal investigators of the Nijmegen Biomedical 

Study are Lambertus Kiemeney, André Verbeek, Dorine Swinkels and Barbara Franke. The 

Nijmegen Biomedical Study (NBS) data are managed by the NBS project team and are 

available upon request; see www.nijmegenbiomedischestudie.nl for an overview of the data 

available in this study. Current practical coordinator of the NBS is dr. T.E. Galesloot. 

Readers can contact her to request the data (Tessel.Galesloot@radboudumc.nl). 
 

NTR (Netherlands Twin Register) – We would like to thank all the twins and family 

members for their participation. This work was supported by the Netherlands Organization 

for Scientific Research (NWO: MagW/ZonMW grants 904-61-090, 985-10-002,904-61-
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193,480-04-004, 400-05-717, Addiction-31160008 Middelgroot-911-09-032, Spinozapremie 

56-464-14192), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI –

NL, 184.021.007), the VU University’s Institute for Health and Care Research (EMGO+ ) 

and  Neuroscience Campus Amsterdam (NCA), the European Science Council (ERC 

Advanced, 230374), the Avera Institute for Human Genetics, Sioux Falls, South Dakota 

(USA) and the National Institutes of Health (NIH, R01D0042157-01A). Part of the 

genotyping was funded by the Genetic Association Information Network (GAIN) of the 

Foundation for the US National Institutes of Health (NIMH, MH081802) and by the Grand 

Opportunity grants 1RC2MH089951-01 and 1RC2 MH089995-01 from the NIMH. Part of 

the analyses were carried out on the Genetic Cluster Computer 

(http://www.geneticcluster.org), which is financially supported by the Netherlands Scientific 

Organization (NWO 480-05-003), the Dutch Brain Foundation, and the department of 

Psychology and Education of the VU University Amsterdam. For access to NTR results, 

please contact Abdel Abdellaoui at a.abdellaoui@vu.nl or Dorret I. Boomsma at 

di.boomsma@vu.nl. 
 

OGP (Ogliastra Genetic Park) – We thank the Ogliastra population and all the individuals 

who participated in this study. We are very grateful to the municipal administrators for their 

collaboration to the project and for economic and logistic support. This research was 

supported by grant from the Italian Ministry of Education, University and Research (MERIT 

RBNE08NKH7_007).  For more information and for access to results please contact Mario 

Pirastu at pirastu@igp.cnr.it or Maria Pina Concas at m.p.concas@irgb.cnr.it. 

 

ORCADES (The Orkney Complex Disease Study) – ORCADES was supported by the 

Chief Scientist Office of the Scottish Government, the Royal Society, the MRC Human 

Genetics Unit, Arthritis Research UK and the European Union framework program 6 

EUROSPAN project (contract no. LSHG-CT-2006-018947). DNA extractions were 

performed at the Wellcome Trust Clinical Research Facility in Edinburgh. We would like to 

acknowledge the invaluable contributions of Lorraine Anderson and the research nurses in 

Orkney, the administrative team in Edinburgh and the people of Orkney. Further information 

and association summary statistics are available from orkney@ed.ac.uk. 

 

PREVEND (Prevention of Renal and Vascular Endstage Disease) – PREVEND genetics 

is supported by the Dutch Kidney Foundation (Grant E033), the EU project grant 

GENECURE (FP-6 LSHM CT 2006 037697), the National Institutes of Health (grant 

2R01LM010098), The Netherlands organisation for health research and development (NWO-

Groot grant 175.010.2007.006, NWO VENI grant 916.761.70, ZonMw grant 90.700.441), 

and the Dutch Inter University Cardiology Institute Netherlands (ICIN). For more 

information, contact PREVEND’s PI Pim van der Harst p.van.der.harst@umcg.nl.  
 

QIMR (Queensland Institute of Medical Research) – Funding was provided by the 

Australian National Health and Medical Research Council (241944, 339462, 389927, 

389875, 389891, 389892, 389938, 442915, 442981, 496739, 552485, 552498), the Australian 

Research Council (A7960034, A79906588, A79801419, DP0770096, DP0212016, 

DP0343921), the FP-5 GenomEUtwin Project (QLG2-CT-2002-01254), and the U.S. 

National Institutes of Health (NIH grants AA07535, AA10248, AA13320, AA13321, 

AA13326, AA14041, DA12854, MH66206). A portion of the genotyping on which the 

QIMR study was based (Illumina 370K scans) was carried out at the Center for Inherited 

Disease Research, Baltimore (CIDR), through an access award to the authors’ late colleague 

Dr. Richard Todd (Psychiatry, Washington University School of Medicine, St Louis). 
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Imputation was carried out on the Genetic Cluster Computer, which is financially supported 

by the Netherlands Scientific Organization (NWO 480-05-003). N.W.H.M was supported by 

a PhD scholarship from the ANZ trust. S.E.M., is supported by the Australian Research 

Council (ARC) Fellowship Scheme. Dale R. Nyholt is supported by the Australian Research 

Council (ARC) Future Fellowship (FT0991022) and National Health and Medical Research 

Council (NHMRC) Research Fellowship (APP0613674) Schemes. The funders had no role in 

study design, data collection and analysis, decision to publish, or preparation of the 

manuscript. Researchers interested in using QIMR data can contact Nick Martin 

(Nick.Martin@qimrberghofer.edu.au) and Sarah Medland (medlandse@gmail.com).  
 

RS (Rotterdam Study) – The generation and management of GWAS genotype data for the 

Rotterdam Study is supported by the Netherlands Organisation of Scientific Research NWO 

Investments (nr. 175.010.2005.011, 911-03-012). This study is funded by the Research 

Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics 

Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project nr. 050-

060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein 

Peters for their help in creating the GWAS database, and Karol Estrada and Maksim V. 

Struchalin for their support in creation and analysis of imputed data. The Rotterdam Study is 

funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands 

Organization for the Health Research and Development (ZonMw), the Research Institute for 

Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry 

for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of 

Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam 

Study and the participating general practitioners and pharmacists. Some of the statistical 

analyses were carried out on the Genetic Cluster Computer (http://www.geneticcluster.org) 

which is financially supported by the Netherlands Scientific Organization (NWO 480-05-003 

PI: Posthuma) along with a supplement from the Dutch Brain Foundation and the VU 

University Amsterdam. Researchers who wish to use data of the Rotterdam Study must 

obtain approval from the Rotterdam Study Management Team. They are advised to contact 

the PI of the Rotterdam Study, Dr Albert Hofman (a.hofman@erasmusmc.nl). 
 

RUSH (The Rush Memory and Aging Project, and Religious Orders Study) is supported 

by NIA Grants R01AG15819, R01AG17917, R01AG33678, and the Translational Genomics 

Research Institute. The Rush Religious Orders Study is supported by NIA Grants 

P30AG10161, R01AG15819 and R01AG30146, and the Translational Genomics Research 

Institute. We thank the study participants and the staff of the Rush Alzheimer’s Disease 

Center. To obtain data from the Rush Alzheimer's Disease Center (RADC), please submit a 

request through the RADC research website: https://www.radc.rush.edu/res/ext/home.htm. 
 

SardiNIa (SardinNIA Study of Aging) - The SardiNIA study thanks the many individuals 

who generously participated in this study, the Mayors and citizens of the Sardinian towns 

involved, the head of the Public Health Unit ASL4, and the province of Ogliastra for their 

volunteerism and cooperation. In addition, we are grateful to the Mayor and the 

administration in Lanusei for providing and furnishing the clinic site. This work was 

supported by the Intramural Research Program of the National Institute on Aging (NIA), 

National Institutes of Health (NIH), with contracts NO1-AG-1–2109 and 

HHSN271201100005C. For more information, contact Francesca Cucca 

(francesco.cucca@irgb.cnr.it) or David Schlessinger (SchlessingerD@grc.nia.nih.gov). 
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SHIP (Study of Health in Pomerania) – SHIP is part of the Community Medicine Research 

net of the University of Greifswald, Germany, which is funded by the Federal Ministry of 

Education and Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of 

Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West 

Pomerania, and the network ‘Greifswald Approach to Individualized Medicine 

(GANI_MED)’ funded by the Federal Ministry of Education and Research (grant 

03IS2061A). Genome-wide data have been supported by the Federal Ministry of Education 

and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, 

Germany and the Federal State of Mecklenburg- West Pomerania. The University of 

Greifswald is a member of the Caché Campus program of the InterSystems GmbH. The SHIP 

and SHIP-TREND data and results may be accessed via a data transfer application online at: 

https://fvcm.med.uni-greifswald.de/cm_antrag/ (support by email: transfer@uni-

greifswald.de). 

 

STR (Swedish Twin Registry) – The Jan Wallander and Tom Hedelius Foundation (P2012-

0002:1), the Ragnar Söderberg Foundation (E9/11), The Swedish Research Council (421-

2013-1061), the Ministry for Higher Education, The Swedish Research Council (M-2205-

1112), GenomEUtwin (EU/QLRT-2001-01254; QLG2-CT-2002-01254), NIH DK U01-

066134, The Swedish Foundation for Strategic Research (SSF).  Researchers interested in 

using STR data must obtain approval from the Swedish Ethical Review Board and from the 

Steering Committee of the Swedish Twin Registry. Researchers using the data are required to 

follow the terms of an Assistance Agreement containing a number of clauses designed to 

ensure protection of privacy and compliance with relevant laws. For Further information, 

contact Patrik Magnusson (Patrik.magnusson@ki.se).  

 

THISEAS (The Hellenic study of Interactions between SNPs & Eating in 

Atherosclerosis Susceptibility) – Recruitment for THISEAS was partially funded by a 

research grant (PENED 2003) from the Greek General Secretary of Research and 

Technology; we thank all the dieticians and clinicians for their contribution to the project. 

The genotyping was funded by the Wellcome Trust. We like to thank the members of the 

WTSI GenotypingFacility in particular Sarah Edkins and Cordelia Langford. Researchers 

interested in using the THISEAS data must obtain approval from the THISEAS study group. 

Researchers using the data are required to follow the terms of a research agreement between 

them and the THISEAS investigators. Note that individual level data cannot be released to 

external investigators, only summary GWAS results. For further information contact George 

Dedoussis (dedousi@hua.gr). 
 

TwinsUK (St. Thomas’ UK Adult Twin Registry) – The study was funded by the 

Wellcome Trust; European Community’s Seventh Framework Programme (FP7/2007-2013). 

The study also receives support from the National Institute for Health Research (NIHR) 

BioResource Clinical Research Facility and Biomedical Research Centre based at Guy's and 

St Thomas' NHS Foundation Trust and King's College London. Tim Spector is an ERC 

Advanced Researcher. SNP Genotyping was performed by The Wellcome Trust Sanger 

Institute and National Eye Institute via NIH/CIDR. 

To obtain access to TwinsUK data please follow our data access policy 

(http://www.twinsuk.ac.uk/data-access/submission-procedure/).TwinsUK EA2.0 summary 

results are available on request to the corresponding author of the paper. 

 

WTCCC-58BC and DIL (The Wellcome Trust Case Control Consortium (1958 Birth 

Cohort) and Diabetes and Inflammation Laboratory) – DNA collection was funded by 
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MRC grant G0000934 and cell-line creation by Wellcome Trust grant 068545/Z/02. This 

research used resources provided by the Type 1 Diabetes Genetics, a collaborative clinical 

study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases 

(NIDDK), National Institute of Allergy and Infectious Diseases, National Human Genome 

Research Institute, National Institute of Child Health and Human Development, and Juvenile 

Diabetes Research Foundation International (JDRF) and supported by U01 DK062418. This 

study makes use of data generated by the Wellcome Trust Case-Control Consortium. A full 

list of investigators who contributed to generation of the data is available from the Wellcome 

Trust Case-Control Consortium website. Funding for the project was provided by the 

Wellcome Trust under the award 076113. Great Ormond Street Hospital/University College 

London, Institute of Child Health receives a proportion of funding from the Department of 

Health's National Institute for Health Research (NIHR) ('Biomedical Research Centres' 

funding).  Written consent was obtained from participants for the use of information in 

medical studies. The 45-year biomedical survey and genetic studies were approved by the 

South-East Multi- Centre Research Ethics Committee (ref: 01/1/44) and the joint UCL/UCLH 

Committees on the Ethics of Human Research (Ref: 08/H0714/40). The individual-level 

genotype and phenotype data for WTCCC-58BC and DIL (T1DGC) can be applied for 

through the data access committee 

at http://www2.le.ac.uk/projects/birthcohort/1958bc/available-resources. 

 

YFS (The Cardiovascular Risk in Young Finns Study) – The Young Finns  Study has 

been financially supported by the Academy of Finland: grants 134309 (Eye), 126925, 

121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi); the Social Insurance 

Institution of Finland;  Kuopio, Tampere and Turku University Hospital Medical Funds 

(grant X51001 for T.L.); Juho Vainio Foundation; Paavo Nurmi Foundation; Finnish 

Foundation of Cardiovascular Research (T.L.); Finnish Cultural Foundation; Tampere 

Tuberculosis Foundation (T.L.); Emil Aaltonen Foundation (T.L.); and Yrjö Jahnsson 

Foundation (T.L.). The expert technical assistance in the statistical analyses by Irina 

Lisinen, Ville Aalto and Mika Helminen are gratefully acknowledged. Researchers interested 

in using the YFS data must obtain approval from the YFS study group. Researchers using the 

data are required to follow the terms of a research agreement between them and the YFS 

investigators. For further information contact Olli Raitakari (olli.raitakari@utu.fi). 
 

23andMe, Inc. – We would like to thank the customers and employees of 23andMe for 

making this work possible. This work was supported by the National Human Genome 

Research Institute of the National Institutes of Health (grant number R44HG006981).  
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